This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "ds/wavelet_matrix_with_fenwick.hpp"
#pragma once
#include "ds/fenwick.hpp"
#include "ds/bit_vector.hpp"
template <class Key, Key U, class M>
class wavelet_matrix_with_fenwick {
public:
using key_type = Key;
using value_type = typename M::type;
wavelet_matrix_with_fenwick(vector<Key> a, M m = M())
: wavelet_matrix_with_fenwick(a, a, m) {}
wavelet_matrix_with_fenwick(vector<Key> a, vector<value_type> b, M m = M())
: m_(m), size_(a.size()) {
vector<bool> bit(size_);
vector<key_type> nxt_a(size_);
vector<value_type> nxt_b(size_);
repr(t, B) {
int l = 0, r = size_;
rep(i, size_) {
bit[i] = a[i] >> t & 1;
(bit[i] ? nxt_a[r - 1] : nxt_a[l]) = a[i];
(bit[i] ? nxt_b[--r] : nxt_b[l++]) = b[i];
}
mat[t] = bit_vector(all(bit));
zeros[t] = l;
fwk[t + 1] = fenwick_tree<M>(b, m);
reverse(nxt_a.begin() + r, nxt_a.end());
reverse(nxt_b.begin() + r, nxt_b.end());
swap(a, nxt_a);
swap(b, nxt_b);
}
fwk[0] = fenwick_tree<M>(b, m);
}
int size() const { return size_; }
key_type operator[](int i) const { return access(i); }
key_type access(int i) const {
key_type res = 0;
repr(t, B) {
if (mat[t][i]) {
res |= key_type(1) << t;
i = zeros[t] + mat[t].rank1(i);
} else {
i = mat[t].rank0(i);
}
}
return res;
}
// #occurences of x on [l, r)
int rank(key_type x, int l, int r) const {
tie(l, r) = range(x, l, r);
return r - l;
}
// -1 if #occurences <= k
int select(key_type x, int l, int k) const {
int r;
tie(l, r) = range(x, l, size());
l += k;
if (l >= r) return -1;
rep(t, B) {
if (x >> t & 1)
l = mat[t].select1(l - zeros[t]);
else
l = mat[t].select0(l);
}
return l;
}
// k-th greatest on [l, r)
key_type quantile(int l, int r, int k) const {
key_type res = 0;
repr(t, B) {
int r1 = mat[t].rank1(l, r);
if (r1 > k) {
res |= key_type(1) << t;
l = zeros[t] + mat[t].rank1(l);
r = l + r1;
} else {
k -= r1;
int r0 = r - l - r1;
l = mat[t].rank0(l);
r = l + r0;
}
}
return res;
}
// k-th smallest on [l, r)
key_type rquantile(int l, int r, int k) const {
return quantile(l, r, r - l - k - 1);
}
int rangefreq(int l, int r, key_type ub) const {
int res = 0;
repr(t, B) {
if (ub >> t & 1) {
int r1l = mat[t].rank1(l), r1r = mat[t].rank1(r);
int r0lr = (r - l) - (r1r - r1l);
res += r0lr;
l = zeros[t] + r1l, r = zeros[t] + r1r;
} else {
l = mat[t].rank0(l), r = mat[t].rank0(r);
}
}
return res;
}
value_type range_reduce(int l, int r, key_type ub) const {
value_type res = m_.unit();
repr(t, B) {
if (ub >> t & 1) {
int r1l = mat[t].rank1(l), r1r = mat[t].rank1(r);
res = m_.op(res, fwk[t + 1].sum(l, r));
l = zeros[t] + r1l, r = zeros[t] + r1r;
res = m_.op(res, m_.inv(fwk[t].sum(l, r)));
} else {
l = mat[t].rank0(l), r = mat[t].rank0(r);
}
}
return res;
}
// int rangefreq(int l, int r, key_type lb, key_type ub) const {
// return rangefreq(B - 1, l, r, lb, ub - 1);
// }
int rangefreq(int l, int r, key_type lb, key_type ub) const {
return rangefreq(l, r, ub) - rangefreq(l, r, lb);
}
value_type range_reduce(int l, int r, key_type lb, key_type ub) const {
return m_.op(range_reduce(l, r, ub), m_.inv(range_reduce(l, r, lb)));
}
// -1 if no such elt
key_type succ(int l, int r, key_type x) const {
int k = rangefreq(l, r, x);
return k == r - l ? -1 : rquantile(l, r, k);
}
// -1 if no such elt
key_type pred(int l, int r, key_type x) const {
int k = rangefreq(l, r, x);
return k ? rquantile(l, r, k - 1) : -1;
}
private:
static constexpr int calc_b(key_type u) {
int res = 0;
for (key_type x = u - 1; x; x /= 2) res++;
return res;
}
static constexpr int B = calc_b(U);
static_assert(B <= sizeof(key_type) * CHAR_BIT);
M m_;
int size_;
array<int, B> zeros;
array<bit_vector, B> mat;
array<fenwick_tree<M>, B + 1> fwk;
pair<int, int> range(key_type x, int l, int r) const {
repr(t, B) {
if (x >> t & 1) {
l = zeros[t] + mat[t].rank1(l);
r = zeros[t] + mat[t].rank1(r);
} else {
l = mat[t].rank0(l);
r = mat[t].rank0(r);
}
}
return make_pair(l, r);
}
// // inclusive
// int rangefreq(int t, int l, int r, key_type x, key_type lb, key_type
// ub) const {
// if (t == -1 || ()) return r - l;
// if (lb >> t & 1) {
// l = zeros[t] + mat[t].rank1(l);
// r = zeros[t] + mat[t].rank1(r);
// return rangefreq(t - 1, l, r, lb, ub);
// } else if (~ub >> t & 1) {
// l = mat[t].rank0(l);
// r = mat[t].rank0(r);
// return rangefreq(t - 1, l, r, lb, ub);
// } else {
// l = mat[t].rank0(l);
// r = zeros[t] + mat[t].rank1(r);
// return rangefreq(t - 1, l, zeros[t], lb, ~0) +
// rangefreq(t - 1, zeros[t], r, 0, ub);
// }
// }
};
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "algebra.hpp"
#define CONST(val) [=] { return val; }
#define WRAP_FN(func) \
[](auto&&... args) { return func(forward<decltype(args)>(args)...); }
template <class Unit, class Op>
struct monoid : private Unit, private Op {
using type = decltype(declval<Unit>()());
monoid(Unit unit, Op op) : Unit(unit), Op(op) {}
type unit() const { return Unit::operator()(); }
type op(type a, type b) const { return Op::operator()(a, b); }
};
template <class Unit, class Op, class Inv>
struct group : monoid<Unit, Op>, private Inv {
using type = typename monoid<Unit, Op>::type;
group(Unit unit, Op op, Inv inv) : monoid<Unit, Op>(unit, op), Inv(inv) {}
type inv(type a) const { return Inv::operator()(a); }
};
template <class T>
struct addition {
using type = T;
type unit() const { return 0; }
type op(type a, type b) const { return a + b; }
type inv(type a) const { return -a; }
};
template <class T>
struct maximum {
using type = T;
type unit() const { return numeric_limits<T>::min(); }
type op(type a, type b) const { return a > b ? a : b; }
};
template <class T>
struct minimum {
using type = T;
type unit() const { return numeric_limits<T>::max(); }
type op(type a, type b) const { return a > b ? b : a; }
};
template <class T, T nul = -1>
struct assign {
using type = T;
type unit() const { return nul; }
type op(type a, type b) const { return b == nul ? a : b; }
};
#line 3 "bit/clz.hpp"
#pragma GCC target("lzcnt")
template <class T>
int clz(T x) {
if (!x) return sizeof(T) * 8;
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_clz((unsigned)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_clzll((unsigned long long)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
int l = clz((unsigned long long)(x >> sizeof(unsigned long long) * 8));
return l != sizeof(unsigned long long) * 8 ? l : l + clz((unsigned long long)x);
}
}
#line 4 "bit/ilog2.hpp"
template <class T>
__attribute__((pure)) int ilog2(T x) { assert(x != 0); return sizeof(T) * 8 - 1 - clz(x); }
template <class T>
__attribute__((pure)) int ilog2_ceil(T x) { return x == 0 || x == 1 ? 0 : ilog2(x - 1) + 1; }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_floor(T x) { return T(1) << ilog2(x); }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_ceil(T x) { return T(1) << ilog2_ceil(x); }
#line 4 "ds/fenwick.hpp"
template <class M>
class fenwick_tree {
public:
using value_type = typename M::type;
fenwick_tree() = default;
fenwick_tree(vector<value_type> v, M m = M()) : m(m), data(move(v)) {
data.insert(data.cbegin(), m.unit());
for (int i = 1; i < data.size(); i++) {
if (i + lsb(i) < data.size())
data[i + lsb(i)] = m.op(data[i + lsb(i)], data[i]);
}
}
template <class Iter>
fenwick_tree(Iter f, Iter l, M m = M())
: fenwick_tree(vector<value_type>(f, l), m) {}
fenwick_tree(int n, M m = M()) : m(m), data(n + 1, m.unit()) {}
int size() const { return data.size() - 1; }
void clear() { fill(data.begin(), data.end(), m.unit()); }
void add(int i, value_type v) {
for (i++; i < data.size(); i += lsb(i)) data[i] = m.op(data[i], v);
}
void sub(int i, value_type v) { add(i, m.inv(v)); }
void assign(int i, value_type v) { add(i, m.op(v, m.inv(sum(i, i + 1)))); }
value_type sum(int r) const {
value_type res = m.unit();
for (; r; r -= lsb(r)) res = m.op(res, data[r]);
return res;
}
value_type sum(int l, int r) const { return m.op(m.inv(sum(l)), sum(r)); }
template <class F>
int partition_point(F pred = F()) const {
int i = 0;
value_type s = m.unit();
if (!pred(s)) return i;
for (int w = bit_floor(data.size()); w; w >>= 1) {
if (i + w < data.size()) {
value_type s2 = m.op(s, data[i + w]);
if (pred(s2)) i += w, s = s2;
}
}
return i + 1;
}
// min i s.t. sum(i) >= x
template <class Comp = less<value_type>>
int lower_bound(value_type x, Comp comp = Comp()) const {
return partition_point([&](value_type s) { return comp(s, x); });
}
private:
M m;
vector<value_type> data;
static int lsb(int a) { return a & -a; }
};
#line 3 "bit/popcnt.hpp"
#pragma GCC target("popcnt")
template <class T>
int popcnt(T a) {
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_popcount((unsigned)a);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_popcountll((unsigned long long)a);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
return popcnt((unsigned long long)a) +
popcnt((unsigned long long)(a >> sizeof(unsigned long long) * 8));
}
}
#line 4 "ds/bit_vector.hpp"
class bit_vector {
public:
bit_vector(int n = 0) : bit(n / 8 + 1), sum(n / 8 + 2) {}
template <class It>
bit_vector(It a, It last) : bit_vector(last - a) {
int n = last - a;
rep(i, n) bit[i / 64] |= uint64_t(a[i] != 0) << (i % 64);
rep(i, bit.size()) sum[i + 1] = sum[i] + popcnt(bit[i]);
}
int size() const { return bit.size() * 64; }
bool operator[](int i) const { return bit[i / 64] >> (i % 64) & 1; }
int rank0(int r) const { return r - rank1(r); }
int rank0(int l, int r) const { return rank0(r) - rank0(l); }
int rank1(int r) const {
return sum[r / 64] + popcnt(bit[r / 64] & ~(~uint64_t(0) << (r % 64)));
}
int rank1(int l, int r) const { return rank1(r) - rank1(l); }
int rank(bool b, int r) const { return b ? rank1(r) : rank0(r); }
int rank(bool b, int l, int r) const { return b ? rank1(l, r) : rank0(l, r); }
int select0(int l, int k) const {
int r = bit.size() * 8;
while (l + 1 < r) {
int m = (l + r) / 2;
(rank0(m) <= k ? l : r) = m;
}
return l;
}
int select0(int k) const { return select0(0, k); }
int select1(int l, int k) const {
int r = bit.size() * 8;
while (l + 1 < r) {
int m = (l + r) / 2;
(rank1(m) <= k ? l : r) = m;
}
return l;
}
int select1(int k) const { return select1(0, k); }
int select(bool v, int k) const { return v ? select1(k) : select0(k); }
int select(bool v, int l, int k) const {
return v ? select1(l, k) : select0(l, k);
}
private:
vector<uint64_t> bit;
vector<int> sum;
};
#line 4 "ds/wavelet_matrix_with_fenwick.hpp"
template <class Key, Key U, class M>
class wavelet_matrix_with_fenwick {
public:
using key_type = Key;
using value_type = typename M::type;
wavelet_matrix_with_fenwick(vector<Key> a, M m = M())
: wavelet_matrix_with_fenwick(a, a, m) {}
wavelet_matrix_with_fenwick(vector<Key> a, vector<value_type> b, M m = M())
: m_(m), size_(a.size()) {
vector<bool> bit(size_);
vector<key_type> nxt_a(size_);
vector<value_type> nxt_b(size_);
repr(t, B) {
int l = 0, r = size_;
rep(i, size_) {
bit[i] = a[i] >> t & 1;
(bit[i] ? nxt_a[r - 1] : nxt_a[l]) = a[i];
(bit[i] ? nxt_b[--r] : nxt_b[l++]) = b[i];
}
mat[t] = bit_vector(all(bit));
zeros[t] = l;
fwk[t + 1] = fenwick_tree<M>(b, m);
reverse(nxt_a.begin() + r, nxt_a.end());
reverse(nxt_b.begin() + r, nxt_b.end());
swap(a, nxt_a);
swap(b, nxt_b);
}
fwk[0] = fenwick_tree<M>(b, m);
}
int size() const { return size_; }
key_type operator[](int i) const { return access(i); }
key_type access(int i) const {
key_type res = 0;
repr(t, B) {
if (mat[t][i]) {
res |= key_type(1) << t;
i = zeros[t] + mat[t].rank1(i);
} else {
i = mat[t].rank0(i);
}
}
return res;
}
// #occurences of x on [l, r)
int rank(key_type x, int l, int r) const {
tie(l, r) = range(x, l, r);
return r - l;
}
// -1 if #occurences <= k
int select(key_type x, int l, int k) const {
int r;
tie(l, r) = range(x, l, size());
l += k;
if (l >= r) return -1;
rep(t, B) {
if (x >> t & 1)
l = mat[t].select1(l - zeros[t]);
else
l = mat[t].select0(l);
}
return l;
}
// k-th greatest on [l, r)
key_type quantile(int l, int r, int k) const {
key_type res = 0;
repr(t, B) {
int r1 = mat[t].rank1(l, r);
if (r1 > k) {
res |= key_type(1) << t;
l = zeros[t] + mat[t].rank1(l);
r = l + r1;
} else {
k -= r1;
int r0 = r - l - r1;
l = mat[t].rank0(l);
r = l + r0;
}
}
return res;
}
// k-th smallest on [l, r)
key_type rquantile(int l, int r, int k) const {
return quantile(l, r, r - l - k - 1);
}
int rangefreq(int l, int r, key_type ub) const {
int res = 0;
repr(t, B) {
if (ub >> t & 1) {
int r1l = mat[t].rank1(l), r1r = mat[t].rank1(r);
int r0lr = (r - l) - (r1r - r1l);
res += r0lr;
l = zeros[t] + r1l, r = zeros[t] + r1r;
} else {
l = mat[t].rank0(l), r = mat[t].rank0(r);
}
}
return res;
}
value_type range_reduce(int l, int r, key_type ub) const {
value_type res = m_.unit();
repr(t, B) {
if (ub >> t & 1) {
int r1l = mat[t].rank1(l), r1r = mat[t].rank1(r);
res = m_.op(res, fwk[t + 1].sum(l, r));
l = zeros[t] + r1l, r = zeros[t] + r1r;
res = m_.op(res, m_.inv(fwk[t].sum(l, r)));
} else {
l = mat[t].rank0(l), r = mat[t].rank0(r);
}
}
return res;
}
// int rangefreq(int l, int r, key_type lb, key_type ub) const {
// return rangefreq(B - 1, l, r, lb, ub - 1);
// }
int rangefreq(int l, int r, key_type lb, key_type ub) const {
return rangefreq(l, r, ub) - rangefreq(l, r, lb);
}
value_type range_reduce(int l, int r, key_type lb, key_type ub) const {
return m_.op(range_reduce(l, r, ub), m_.inv(range_reduce(l, r, lb)));
}
// -1 if no such elt
key_type succ(int l, int r, key_type x) const {
int k = rangefreq(l, r, x);
return k == r - l ? -1 : rquantile(l, r, k);
}
// -1 if no such elt
key_type pred(int l, int r, key_type x) const {
int k = rangefreq(l, r, x);
return k ? rquantile(l, r, k - 1) : -1;
}
private:
static constexpr int calc_b(key_type u) {
int res = 0;
for (key_type x = u - 1; x; x /= 2) res++;
return res;
}
static constexpr int B = calc_b(U);
static_assert(B <= sizeof(key_type) * CHAR_BIT);
M m_;
int size_;
array<int, B> zeros;
array<bit_vector, B> mat;
array<fenwick_tree<M>, B + 1> fwk;
pair<int, int> range(key_type x, int l, int r) const {
repr(t, B) {
if (x >> t & 1) {
l = zeros[t] + mat[t].rank1(l);
r = zeros[t] + mat[t].rank1(r);
} else {
l = mat[t].rank0(l);
r = mat[t].rank0(r);
}
}
return make_pair(l, r);
}
// // inclusive
// int rangefreq(int t, int l, int r, key_type x, key_type lb, key_type
// ub) const {
// if (t == -1 || ()) return r - l;
// if (lb >> t & 1) {
// l = zeros[t] + mat[t].rank1(l);
// r = zeros[t] + mat[t].rank1(r);
// return rangefreq(t - 1, l, r, lb, ub);
// } else if (~ub >> t & 1) {
// l = mat[t].rank0(l);
// r = mat[t].rank0(r);
// return rangefreq(t - 1, l, r, lb, ub);
// } else {
// l = mat[t].rank0(l);
// r = zeros[t] + mat[t].rank1(r);
// return rangefreq(t - 1, l, zeros[t], lb, ~0) +
// rangefreq(t - 1, zeros[t], r, 0, ub);
// }
// }
};