This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/tree/aux.hpp"
#pragma once
#include "graph/tree/dfs.hpp"
#include "graph/tree/lca.hpp"
template <class G>
struct aux_tree {
public:
aux_tree(G& graph, int r = 0) : g(graph), lc(graph, r) {
ord.resize(g.size());
mp.assign(g.size(), -1);
int t = 0;
dfs_ord(g, r, [&](int v, int) { ord[v] = t++; });
}
pair<csr_graph<void>, vector<int>> get(vector<int> vs) {
if (vs.empty()) vs.push_back(0);
sort(all(vs), [&](int u, int v) { return ord[u] < ord[v]; });
vs.erase(unique(all(vs)), vs.end());
mp[vs[0]] = 0;
vector<int> id = {vs[0]}, stack = {vs[0]};
vector<pair<int, int>> es;
rep2(i, 1, vs.size()) {
int w = lc(vs[i - 1], vs[i]);
if (mp[vs[i]] == -1) mp[vs[i]] = id.size(), id.push_back(vs[i]);
if (mp[w] == -1) mp[w] = id.size(), id.push_back(w);
if (w != vs[i-1]) {
int v = stack.back();
stack.pop_back();
while (!stack.empty() && lc.depth(stack.back()) > lc.depth(w)) {
es.emplace_back(mp[stack.back()], mp[v]);
v = stack.back(), stack.pop_back();
}
es.emplace_back(mp[w], mp[v]);
if (stack.empty() || stack.back() != w) stack.push_back(w);
}
stack.push_back(vs[i]);
}
while (stack.size() >= 2) {
int v = stack.back();
stack.pop_back();
es.emplace_back(mp[stack.back()], mp[v]);
}
int k = id.size();
rep(i, k) mp[id[i]] = -1;
return pair(csr_graph(k, all(es)), move(id));
}
private:
vector<int> ord;
graph_trait<G> g;
lca lc;
vector<int> mp;
};
#line 2 "graph/tree/aux.hpp"
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "graph/traits.hpp"
struct unit_edge {
int to;
operator int() const { return to; }
int w() const { return 1; }
};
template <class Weight>
struct weighted_edge {
int to;
Weight weight;
operator int() const { return to; }
Weight w() const { return weight; }
};
template <class Inner>
struct basic_graph {
using weight_type = void;
const Inner& inner;
basic_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto u : inner[v]) f(unit_edge{u});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner, class Weight>
struct basic_weighted_graph {
using weight_type = Weight;
const Inner& inner;
basic_weighted_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto [u, w] : inner[v]) f(weighted_edge<weight_type>{u, w});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner>
struct graph_trait {
using weight_type = typename Inner::weight_type;
const Inner& g;
graph_trait(const Inner& g) : g(g) { }
int size() const { return g.size(); }
template <class F>
void adj(int v, F f) const {
g.adj(v, f);
}
decltype(auto) operator[](int v) const { return g[v]; }
};
template <class T>
constexpr bool is_weighted_v =
!is_same_v<typename graph_trait<T>::weight_type, void>;
template <class T>
using weight_t =
conditional_t<is_weighted_v<T>, typename graph_trait<T>::weight_type, int>;
template <class T>
using edge_t =
conditional_t<is_weighted_v<T>, weighted_edge<weight_t<T>>, unit_edge>;
template <size_t N>
struct graph_trait<vector<int>[N]> : basic_graph<vector<int>[N]> {
using basic_graph<vector<int>[N]>::basic_graph;
int size() const { return N; }
};
template <>
struct graph_trait<vector<vector<int>>> : basic_graph<vector<vector<int>>> {
using basic_graph<vector<vector<int>>>::basic_graph;
int size() const { return this->inner.size(); }
};
template <size_t N, class Weight>
struct graph_trait<vector<pair<int, Weight>>[N]>
: basic_weighted_graph<vector<pair<int, Weight>>[N], Weight> {
using basic_weighted_graph<
vector<pair<int, Weight>>[N], Weight>::basic_weighted_graph;
int size() const { return N; }
};
template <class Weight>
struct graph_trait<vector<vector<pair<int, Weight>>>>
: basic_weighted_graph<vector<vector<pair<int, Weight>>>, Weight> {
using basic_weighted_graph<
vector<vector<pair<int, Weight>>>, Weight>::basic_weighted_graph;
int size() const { return this->inner.size(); }
};
#line 3 "range.hpp"
template <class It>
struct range : pair<It, It> {
using pair<It, It>::pair;
It begin() const { return this->first; }
It end() const { return this->second; }
It cbegin() const { return begin(); }
It cend() const { return end(); }
int size() const { return this->second - this->first; }
};
#line 4 "graph/csr.hpp"
template <size_t>
struct stdin_reader;
template <class Weight = void>
class csr_graph {
private:
struct directed_t {};
public:
using weight_type = Weight;
csr_graph() = default;
template <class It>
csr_graph(int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<false>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<false>(all(e));
}
template <class It>
static csr_graph directed(int n, It e, It e_last) {
return csr_graph(directed_t{}, n, e, e_last);
}
template <size_t Size = 1 << 26>
static csr_graph directed(int n, int m, stdin_reader<Size>& read) {
return csr_graph(directed_t{}, n, m, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(int n, stdin_reader<Size>& read) {
return csr_graph(n, n - 1, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(stdin_reader<Size>& read) {
int n = read;
return csr_graph(n, n - 1, read);
}
int size() const { return n; }
range<typename vector<edge_t<csr_graph>>::iterator> operator[](int v) const {
return {ls[v], rs[v]};
}
int deg(int v) { return rs[v] - ls[v]; }
template <class F>
void adj(int v, F f) const {
for_each(ls[v], rs[v], f);
}
private:
template <class It>
csr_graph(directed_t, int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<true>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(directed_t, int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<true>(all(e));
}
vector<typename vector<edge_t<csr_graph>>::iterator> ls, rs;
int n, m;
vector<edge_t<csr_graph>> es;
template <bool OneBased = true, size_t Size = 1 << 26>
auto read_e(stdin_reader<Size>& read) {
using E = conditional_t<is_weighted_v<csr_graph>, tuple<int, int, Weight>,
pair<int, int>>;
vector<E> res(m);
for (auto& e : res) {
read(e);
if (OneBased) get<0>(e)--, get<1>(e)--;
}
return res;
}
template <bool Directed, class It>
void init(It e, It e_last) {
if (!Directed) m *= 2;
es.resize(m);
ls.resize(n), rs.resize(n);
vector<int> sz(n);
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
sz[from]++;
if (!Directed) sz[to]++;
}
partial_sum(all(sz), sz.begin());
rep(v, n) ls[v] = rs[v] = es.begin() + sz[v];
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
if constexpr (is_weighted_v<csr_graph>)
*--ls[from] = edge_t<csr_graph>{to, get<2>(*it)};
else
*--ls[from] = edge_t<csr_graph>{to};
if (!Directed) {
if constexpr (is_weighted_v<csr_graph>)
*--ls[to] = edge_t<csr_graph>{from, get<2>(*it)};
else
*--ls[to] = edge_t<csr_graph>{from};
}
}
}
};
#line 3 "graph/tree/dfs.hpp"
// f(edge, par)
template <class G, class Fin, class Fout>
void dfs(const G& graph, int s, Fin&& fin, Fout&& fout) {
graph_trait<G> g(graph);
auto dfs_fn = [&](auto&& f, int v, int p) {
g.adj(v, [&](auto&& e) {
if (e.to != p) fin(e, v), f(f, e.to, v), fout(e, v);
});
};
dfs_fn(dfs_fn, s, -1);
}
// f(edge, par)
template <class G, class F>
void dfs(const G& graph, int s, F&& f) {
dfs(graph, s, f, [](auto&&, auto&&) {});
}
// f(edge, par)
template <class G, class F>
void dfs_bottom_up(const G& graph, int s, F&& f) {
dfs(graph, s, [](auto&&, auto&&) {}, f);
}
// f(edge, par or -1)
template <class G, class F>
void dfs_ord(const G& graph, int s, F&& f) {
f(s, -1);
dfs(graph, s, [&](auto&& v, int p) { f(v, p); });
}
// f(edge, par or -1)
template <class G, class F>
void dfs_rev_ord(const G& graph, int s, F&& f) {
dfs_bottom_up(graph, s, [&](auto&& v, int p) { f(v, p); });
f(weighted_edge<weight_t<G>>{s, -1}, -1);
}
#line 3 "bit/clz.hpp"
#pragma GCC target("lzcnt")
template <class T>
int clz(T x) {
if (!x) return sizeof(T) * 8;
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_clz((unsigned)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_clzll((unsigned long long)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
int l = clz((unsigned long long)(x >> sizeof(unsigned long long) * 8));
return l != sizeof(unsigned long long) * 8 ? l : l + clz((unsigned long long)x);
}
}
#line 4 "bit/ilog2.hpp"
template <class T>
__attribute__((pure)) int ilog2(T x) { assert(x != 0); return sizeof(T) * 8 - 1 - clz(x); }
template <class T>
__attribute__((pure)) int ilog2_ceil(T x) { return x == 0 || x == 1 ? 0 : ilog2(x - 1) + 1; }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_floor(T x) { return T(1) << ilog2(x); }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_ceil(T x) { return T(1) << ilog2_ceil(x); }
#line 4 "graph/tree/lca.hpp"
class lca {
public:
template <class G>
lca(const G& g, int r = 0)
: size(graph_trait<G>(g).size() + 1),
height(ilog2(size) + 1),
data(height, vector<int>(size)),
dep(size) {
int sentinel = size - 1;
data[0][r] = data[0][sentinel] = sentinel;
dep[r] = 1;
dfs(g, r, [&](auto&& e, int p) {
data[0][e.to] = p;
dep[e.to] = dep[p] + 1;
});
rep(h, height - 1) rep(x, size) data[h + 1][x] = data[h][data[h][x]];
}
int par(int v) const { return data[0][v]; }
int ascend(int v, int d) const {
rep(h, height) if (d >> h & 1) v = data[h][v];
return v == size - 1 ? -1 : v;
}
int operator()(int u, int v) const {
if (dep[u] < dep[v])
v = ascend(v, dep[v] - dep[u]);
else if (dep[u] > dep[v])
u = ascend(u, dep[u] - dep[v]);
repr(h, height) {
if (data[h][u] != data[h][v]) u = data[h][u], v = data[h][v];
}
return u == v ? u : data[0][u];
}
int depth(int v) const { return dep[v]; }
private:
int size, height;
vector<vector<int>> data;
vector<int> dep;
};
#line 5 "graph/tree/aux.hpp"
template <class G>
struct aux_tree {
public:
aux_tree(G& graph, int r = 0) : g(graph), lc(graph, r) {
ord.resize(g.size());
mp.assign(g.size(), -1);
int t = 0;
dfs_ord(g, r, [&](int v, int) { ord[v] = t++; });
}
pair<csr_graph<void>, vector<int>> get(vector<int> vs) {
if (vs.empty()) vs.push_back(0);
sort(all(vs), [&](int u, int v) { return ord[u] < ord[v]; });
vs.erase(unique(all(vs)), vs.end());
mp[vs[0]] = 0;
vector<int> id = {vs[0]}, stack = {vs[0]};
vector<pair<int, int>> es;
rep2(i, 1, vs.size()) {
int w = lc(vs[i - 1], vs[i]);
if (mp[vs[i]] == -1) mp[vs[i]] = id.size(), id.push_back(vs[i]);
if (mp[w] == -1) mp[w] = id.size(), id.push_back(w);
if (w != vs[i-1]) {
int v = stack.back();
stack.pop_back();
while (!stack.empty() && lc.depth(stack.back()) > lc.depth(w)) {
es.emplace_back(mp[stack.back()], mp[v]);
v = stack.back(), stack.pop_back();
}
es.emplace_back(mp[w], mp[v]);
if (stack.empty() || stack.back() != w) stack.push_back(w);
}
stack.push_back(vs[i]);
}
while (stack.size() >= 2) {
int v = stack.back();
stack.pop_back();
es.emplace_back(mp[stack.back()], mp[v]);
}
int k = id.size();
rep(i, k) mp[id[i]] = -1;
return pair(csr_graph(k, all(es)), move(id));
}
private:
vector<int> ord;
graph_trait<G> g;
lca lc;
vector<int> mp;
};