This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "graph/tree/hld.hpp"
#pragma once
#include "graph.hpp"
class hld {
public:
template <class G>
hld(const G& graph, int r = 0) {
graph_trait<G> g(graph);
in.resize(g.size());
out.resize(g.size());
par.resize(g.size());
heavy.assign(g.size(), -1);
head.resize(g.size());
par[r] = -1;
dfs(g, r);
int t = 0;
decompose(g, t, r);
}
int idx(int v) const { return in[v]; }
int lca(int u, int v) const {
while (head[u] != head[v]) {
if (in[u] > in[v]) swap(u, v);
v = par[head[v]];
}
return in[u] < in[v] ? u : v;
}
// Call f(l[0], r[0]), f(l[1], r[1]), ...
// s.t. union of [l[i], r[i]) == {idx(v) for v in u-v-path}.
template <class F>
void paths(int u, int v, F&& f, bool exclude_lca = true) const {
while (head[u] != head[v]) {
if (in[u] > in[v]) swap(u, v);
call_f(f, idx(head[v]), idx(v) + 1);
v = par[head[v]];
}
if (in[u] > in[v]) swap(u, v);
call_f(f, idx(u) + exclude_lca, idx(v) + 1);
}
template <class F>
void subtree(int v, F&& f, bool exclude_root = true) const {
call_f(f, in[v] + exclude_root, out[v]);
}
private:
vector<int> in, out, par, heavy, head;
template <class G>
int dfs(graph_trait<G> g, int v) {
int total_size = 1, max_size = 0;
g.adj(v, [&](int u) {
if (u != par[v]) {
par[u] = v;
int sz = dfs(g, u);
total_size += sz;
if (sz > max_size) max_size = sz, heavy[v] = u;
}
});
return total_size;
}
template <class G>
void decompose(graph_trait<G> g, int& t, int v) {
in[v] = t++;
if (heavy[v] != -1) head[heavy[v]] = head[v], decompose(g, t, heavy[v]);
g.adj(v, [&](int u) {
if (u != par[v] && u != heavy[v]) head[u] = u, decompose(g, t, u);
});
out[v] = t;
}
template <class F>
void call_f(F& f, int l, int r) const {
if (r - l) f(l, r);
}
};
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "graph/traits.hpp"
struct unit_edge {
int to;
operator int() const { return to; }
int w() const { return 1; }
};
template <class Weight>
struct weighted_edge {
int to;
Weight weight;
operator int() const { return to; }
Weight w() const { return weight; }
};
template <class Inner>
struct basic_graph {
using weight_type = void;
const Inner& inner;
basic_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto u : inner[v]) f(unit_edge{u});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner, class Weight>
struct basic_weighted_graph {
using weight_type = Weight;
const Inner& inner;
basic_weighted_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto [u, w] : inner[v]) f(weighted_edge<weight_type>{u, w});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner>
struct graph_trait {
using weight_type = typename Inner::weight_type;
const Inner& g;
graph_trait(const Inner& g) : g(g) { }
int size() const { return g.size(); }
template <class F>
void adj(int v, F f) const {
g.adj(v, f);
}
decltype(auto) operator[](int v) const { return g[v]; }
};
template <class T>
constexpr bool is_weighted_v =
!is_same_v<typename graph_trait<T>::weight_type, void>;
template <class T>
using weight_t =
conditional_t<is_weighted_v<T>, typename graph_trait<T>::weight_type, int>;
template <class T>
using edge_t =
conditional_t<is_weighted_v<T>, weighted_edge<weight_t<T>>, unit_edge>;
template <size_t N>
struct graph_trait<vector<int>[N]> : basic_graph<vector<int>[N]> {
using basic_graph<vector<int>[N]>::basic_graph;
int size() const { return N; }
};
template <>
struct graph_trait<vector<vector<int>>> : basic_graph<vector<vector<int>>> {
using basic_graph<vector<vector<int>>>::basic_graph;
int size() const { return this->inner.size(); }
};
template <size_t N, class Weight>
struct graph_trait<vector<pair<int, Weight>>[N]>
: basic_weighted_graph<vector<pair<int, Weight>>[N], Weight> {
using basic_weighted_graph<
vector<pair<int, Weight>>[N], Weight>::basic_weighted_graph;
int size() const { return N; }
};
template <class Weight>
struct graph_trait<vector<vector<pair<int, Weight>>>>
: basic_weighted_graph<vector<vector<pair<int, Weight>>>, Weight> {
using basic_weighted_graph<
vector<vector<pair<int, Weight>>>, Weight>::basic_weighted_graph;
int size() const { return this->inner.size(); }
};
#line 3 "range.hpp"
template <class It>
struct range : pair<It, It> {
using pair<It, It>::pair;
It begin() const { return this->first; }
It end() const { return this->second; }
It cbegin() const { return begin(); }
It cend() const { return end(); }
int size() const { return this->second - this->first; }
};
#line 4 "graph/csr.hpp"
template <size_t>
struct stdin_reader;
template <class Weight = void>
class csr_graph {
private:
struct directed_t {};
public:
using weight_type = Weight;
csr_graph() = default;
template <class It>
csr_graph(int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<false>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<false>(all(e));
}
template <class It>
static csr_graph directed(int n, It e, It e_last) {
return csr_graph(directed_t{}, n, e, e_last);
}
template <size_t Size = 1 << 26>
static csr_graph directed(int n, int m, stdin_reader<Size>& read) {
return csr_graph(directed_t{}, n, m, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(int n, stdin_reader<Size>& read) {
return csr_graph(n, n - 1, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(stdin_reader<Size>& read) {
int n = read;
return csr_graph(n, n - 1, read);
}
int size() const { return n; }
range<typename vector<edge_t<csr_graph>>::iterator> operator[](int v) const {
return {ls[v], rs[v]};
}
int deg(int v) { return rs[v] - ls[v]; }
template <class F>
void adj(int v, F f) const {
for_each(ls[v], rs[v], f);
}
private:
template <class It>
csr_graph(directed_t, int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<true>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(directed_t, int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<true>(all(e));
}
vector<typename vector<edge_t<csr_graph>>::iterator> ls, rs;
int n, m;
vector<edge_t<csr_graph>> es;
template <bool OneBased = true, size_t Size = 1 << 26>
auto read_e(stdin_reader<Size>& read) {
using E = conditional_t<is_weighted_v<csr_graph>, tuple<int, int, Weight>,
pair<int, int>>;
vector<E> res(m);
for (auto& e : res) {
read(e);
if (OneBased) get<0>(e)--, get<1>(e)--;
}
return res;
}
template <bool Directed, class It>
void init(It e, It e_last) {
if (!Directed) m *= 2;
es.resize(m);
ls.resize(n), rs.resize(n);
vector<int> sz(n);
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
sz[from]++;
if (!Directed) sz[to]++;
}
partial_sum(all(sz), sz.begin());
rep(v, n) ls[v] = rs[v] = es.begin() + sz[v];
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
if constexpr (is_weighted_v<csr_graph>)
*--ls[from] = edge_t<csr_graph>{to, get<2>(*it)};
else
*--ls[from] = edge_t<csr_graph>{to};
if (!Directed) {
if constexpr (is_weighted_v<csr_graph>)
*--ls[to] = edge_t<csr_graph>{from, get<2>(*it)};
else
*--ls[to] = edge_t<csr_graph>{from};
}
}
}
};
#line 3 "graph/tree/hld.hpp"
class hld {
public:
template <class G>
hld(const G& graph, int r = 0) {
graph_trait<G> g(graph);
in.resize(g.size());
out.resize(g.size());
par.resize(g.size());
heavy.assign(g.size(), -1);
head.resize(g.size());
par[r] = -1;
dfs(g, r);
int t = 0;
decompose(g, t, r);
}
int idx(int v) const { return in[v]; }
int lca(int u, int v) const {
while (head[u] != head[v]) {
if (in[u] > in[v]) swap(u, v);
v = par[head[v]];
}
return in[u] < in[v] ? u : v;
}
// Call f(l[0], r[0]), f(l[1], r[1]), ...
// s.t. union of [l[i], r[i]) == {idx(v) for v in u-v-path}.
template <class F>
void paths(int u, int v, F&& f, bool exclude_lca = true) const {
while (head[u] != head[v]) {
if (in[u] > in[v]) swap(u, v);
call_f(f, idx(head[v]), idx(v) + 1);
v = par[head[v]];
}
if (in[u] > in[v]) swap(u, v);
call_f(f, idx(u) + exclude_lca, idx(v) + 1);
}
template <class F>
void subtree(int v, F&& f, bool exclude_root = true) const {
call_f(f, in[v] + exclude_root, out[v]);
}
private:
vector<int> in, out, par, heavy, head;
template <class G>
int dfs(graph_trait<G> g, int v) {
int total_size = 1, max_size = 0;
g.adj(v, [&](int u) {
if (u != par[v]) {
par[u] = v;
int sz = dfs(g, u);
total_size += sz;
if (sz > max_size) max_size = sz, heavy[v] = u;
}
});
return total_size;
}
template <class G>
void decompose(graph_trait<G> g, int& t, int v) {
in[v] = t++;
if (heavy[v] != -1) head[heavy[v]] = head[v], decompose(g, t, heavy[v]);
g.adj(v, [&](int u) {
if (u != par[v] && u != heavy[v]) head[u] = u, decompose(g, t, u);
});
out[v] = t;
}
template <class F>
void call_f(F& f, int l, int r) const {
if (r - l) f(l, r);
}
};