This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/rectangle_sum
#include "io.hpp"
#include "ds/wavelet_matrix_with_fenwick.hpp"
#include "util/comp.hpp"
#include "util/transpose.hpp"
int main() {
int n = in, q = in;
auto xyw = in.vec<tuple<int, int, ll>>(n);
sort(all(xyw));
auto [x, y, w] = transpose(xyw);
wavelet_matrix_with_fenwick<int, 1'000'000'001, addition<ll>> wm(y, w);
while (q--) {
int l = in, d = in, r = in, u = in;
out(wm.range_reduce(
lower_bound(all(x), l) - x.begin(), lower_bound(all(x), r) - x.begin(),
d, u));
}
}
#line 1 "test/ds/wavelet_matrix_with_fenwick.test.cpp"
// competitive-verifier: PROBLEM https://judge.yosupo.jp/problem/rectangle_sum
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "io.hpp"
template <size_t BufSize = 1 << 26> class stdin_reader {
public: stdin_reader() { buf[fread(buf, 1, sizeof(buf), stdin)] = 0; } template <class T> enable_if_t<is_integral_v<T>> read(T& x) { skip(); [[maybe_unused]] bool neg = false; if constexpr (is_signed_v<T>) neg = *p == '-' ? (p++, true) : false; x = 0; while (*p > ' ') x = x * 10 + (*p++ & 0x0F); if constexpr (is_signed_v<T>) x = neg ? -x : x; } template <class T> void_t<decltype(&T::val)> read(T& x) { x = T((unsigned)(*this)); } void read(char &c) { skip(); c = *p++; } void read(char*& q) { skip(); q = p; while (*p > ' ') p++; *p = 0; } template <size_t N> void read(char (&s)[N]) { read(s); } void read(string& s) { skip(); char* p0 = p; while (*p > ' ') p++; s.assign(p0, p); } template <class T, void_t<decltype(tuple_size<T>::value)>* = nullptr> void read(T& x) { read_tuple_impl(x, make_index_sequence<tuple_size_v<T>>{}); } template <class T, class U> void read(pair<T, U>& x) { read(x.first), read(x.second); } template <class T, size_t N> void read(T (&a)[N]) { for (auto& e : a) read(e); } template <class T> operator T() { T x; return read(x), x; } template <class... Ts> void operator()(Ts&... xs) { (read(xs), ...); } int operator--() { return (int)*this - 1; } template <class T> T* arr(int n) { T* p = new T[n + 1]; rep(i, n) read(p[i]); return p; } template <class T> void vec(vector<T>& v, int n) { v.resize(n); for (auto& e : v) read(e); } template <class T> vector<T> vec(int n) { vector<T> v; return vec(v, n), v; } auto vi(int n) { return vec<int>(n); } auto vi1(int n) { auto v = vec<int>(n); rep(i, n) v[i]--; return v; } auto vll(int n) { return vec<ll>(n); } template <class... Ts> tuple<vector<Ts>...> vecs(int n) { tuple<vector<Ts>...> res; vecs_impl(res, n, make_index_sequence<sizeof...(Ts)>{}); return res; } template <class T> void vvec(vector<vector<T>>& v, int n, int m) { v.resize(n); for (auto& e : v) vec(e, m); } template <class T> vector<vector<T>> vvec(int n, int m) { vector<vector<T>> v; return vvec(v, n, m), v; } template <class... Ts> auto cols(int n) { return transpose(vec<tuple<Ts...>>(n)); } private: char buf[BufSize], *p = buf; void skip() { while (*p <= ' ') p++; } template <class T, size_t... Is> void read_tuple_impl(T& x, index_sequence<Is...>) { (*this)(get<Is>(x)...); } template <class T, size_t... Is> void vecs_impl(T& x, int n, index_sequence<Is...>) { (vec(get<Is>(x), n), ...); } template <class T, size_t... Is> static auto transpose_impl(const vector<T>& v, index_sequence<Is...>) { tuple<vector<decay_t<tuple_element_t<Is, T>>>...> w; (get<Is>(w).reserve(v.size()), ...); for (const auto& row : v) (get<Is>(w).push_back(get<Is>(row)), ...); return w; } template <class T> static auto transpose(const vector<T>& v) { return transpose_impl(v, make_index_sequence<tuple_size_v<T>>{}); }
};
template <size_t BufSize = 1 << 26> class stdout_writer {
public: ~stdout_writer() { flush(); } void flush() { fwrite(buf, 1, p - buf, stdout), p = buf; } void write_char(char c) { *p++ = c; } void write() {} void write(char c) { write_char(c); } template <class T> enable_if_t<is_integral_v<T>> write(T x) { if (!x) return write_char('0'); if constexpr (is_signed_v<T>) if (x < 0) write_char('-'), x = -x; static char tmp[16]; char* q = end(tmp); while (x >= 10000) memcpy(q -= 4, digits.data + x % 10000 * 4, 4), x /= 10000; if (x < 10) write_char('0' + x); else if (x < 100) write_char('0' + (uint8_t)x / 10), write_char('0' + (uint8_t)x % 10); else if (x < 1000) memcpy(p, digits.data + x * 4 + 1, 3), p += 3; else memcpy(p, digits.data + x * 4, 4), p += 4; memcpy(p, q, end(tmp) - q), p += end(tmp) - q; } template <class T> void_t<decltype(&T::val)> write(T x) { write(x.val()); } void write(double x) { static char tmp[40]; sprintf(tmp, "%.15f", x); write(tmp); } void write(long double x) { static char tmp[40]; sprintf(tmp, "%.15Lf", x); write(tmp); } void write(const char* s) { while (*s) *p++ = *s++; } void write(const string& s) { memcpy(p, s.c_str(), s.size()), p += s.size(); } template <class T, class U> void write(const pair<T, U>& x) { write(x.first), write_char(' '), write(x.second); } template <class... Ts> void write(const tuple<Ts...>& x) { write_tuple(x, make_index_sequence<sizeof...(Ts)>{}); } template <class... Ts> void write(const Ts&... xs) { ((write(xs), write_char(' ')), ...), --p; } template <class... Ts> void writeln(const Ts&... xs) { write(xs...), write_char('\n'); } template <class... Ts> void operator()(const Ts&... xs) { writeln(xs...); } template <class It> void iter(It first, It last, char sep = ' ') { if (first == last) write_char('\n'); else { while (first != last) write(*first++), write_char(sep); p[-1] = '\n'; } } template <class It> void iter1(It first, It last, char sep = ' ') { if (first == last) write_char('\n'); else { while (first != last) write(1 + *first++), write_char(sep); p[-1] = '\n'; } } template <class T> void vec(const vector<T>& v, char sep = ' ') { iter(all(v), sep); } template <class T> void write(const vector<T>& v) { vec(v), p--; } template <class T> void vec1(const vector<T>& v, char sep = ' ') { iter1(all(v), sep); } void del() { *--p = 0; } void Yes(bool b = true) { writeln(b ? "Yes" : "No"); } void YES(bool b = true) { writeln(b ? "YES" : "NO"); } void Takahashi(bool b = true) { writeln(b ? "Takahashi" : "Aoki"); } private: char buf[BufSize], *p = buf; template <class T, size_t... Is> void write_tuple(const T& x, index_sequence<Is...>) { ((write(get<Is>(x)), write_char(' ')), ...), --p; } struct four_digits { char data[40000]; constexpr four_digits() : data() { for (int i = 0; i < 10000; i++) for (int n = i, j = 4; j--;) data[i * 4 + j] = n % 10 + '0', n /= 10; } } static constexpr digits{}; public:
#define INSTANT(s) void s() { writeln(#s); }
INSTANT(No) INSTANT(NO) INSTANT(Aoki) INSTANT(possible) INSTANT(Possible) INSTANT(POSSIBLE) INSTANT(impossible) INSTANT(Impossible) INSTANT(IMPOSSIBLE)
#undef INSTANT
};
stdin_reader<> in;
stdout_writer<> out;
#line 3 "algebra.hpp"
#define CONST(val) [=] { return val; }
#define WRAP_FN(func) \
[](auto&&... args) { return func(forward<decltype(args)>(args)...); }
template <class Unit, class Op>
struct monoid : private Unit, private Op {
using type = decltype(declval<Unit>()());
monoid(Unit unit, Op op) : Unit(unit), Op(op) {}
type unit() const { return Unit::operator()(); }
type op(type a, type b) const { return Op::operator()(a, b); }
};
template <class Unit, class Op, class Inv>
struct group : monoid<Unit, Op>, private Inv {
using type = typename monoid<Unit, Op>::type;
group(Unit unit, Op op, Inv inv) : monoid<Unit, Op>(unit, op), Inv(inv) {}
type inv(type a) const { return Inv::operator()(a); }
};
template <class T>
struct addition {
using type = T;
type unit() const { return 0; }
type op(type a, type b) const { return a + b; }
type inv(type a) const { return -a; }
};
template <class T>
struct maximum {
using type = T;
type unit() const { return numeric_limits<T>::min(); }
type op(type a, type b) const { return a > b ? a : b; }
};
template <class T>
struct minimum {
using type = T;
type unit() const { return numeric_limits<T>::max(); }
type op(type a, type b) const { return a > b ? b : a; }
};
template <class T, T nul = -1>
struct assign {
using type = T;
type unit() const { return nul; }
type op(type a, type b) const { return b == nul ? a : b; }
};
#line 3 "bit/clz.hpp"
#pragma GCC target("lzcnt")
template <class T>
int clz(T x) {
if (!x) return sizeof(T) * 8;
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_clz((unsigned)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_clzll((unsigned long long)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
int l = clz((unsigned long long)(x >> sizeof(unsigned long long) * 8));
return l != sizeof(unsigned long long) * 8 ? l : l + clz((unsigned long long)x);
}
}
#line 4 "bit/ilog2.hpp"
template <class T>
__attribute__((pure)) int ilog2(T x) { assert(x != 0); return sizeof(T) * 8 - 1 - clz(x); }
template <class T>
__attribute__((pure)) int ilog2_ceil(T x) { return x == 0 || x == 1 ? 0 : ilog2(x - 1) + 1; }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_floor(T x) { return T(1) << ilog2(x); }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_ceil(T x) { return T(1) << ilog2_ceil(x); }
#line 4 "ds/fenwick.hpp"
template <class M>
class fenwick_tree {
public:
using value_type = typename M::type;
fenwick_tree() = default;
fenwick_tree(vector<value_type> v, M m = M()) : m(m), data(move(v)) {
data.insert(data.cbegin(), m.unit());
for (int i = 1; i < data.size(); i++) {
if (i + lsb(i) < data.size())
data[i + lsb(i)] = m.op(data[i + lsb(i)], data[i]);
}
}
template <class Iter>
fenwick_tree(Iter f, Iter l, M m = M())
: fenwick_tree(vector<value_type>(f, l), m) {}
fenwick_tree(int n, M m = M()) : m(m), data(n + 1, m.unit()) {}
int size() const { return data.size() - 1; }
void clear() { fill(data.begin(), data.end(), m.unit()); }
void add(int i, value_type v) {
for (i++; i < data.size(); i += lsb(i)) data[i] = m.op(data[i], v);
}
void sub(int i, value_type v) { add(i, m.inv(v)); }
void assign(int i, value_type v) { add(i, m.op(v, m.inv(sum(i, i + 1)))); }
value_type sum(int r) const {
value_type res = m.unit();
for (; r; r -= lsb(r)) res = m.op(res, data[r]);
return res;
}
value_type sum(int l, int r) const { return m.op(m.inv(sum(l)), sum(r)); }
template <class F>
int partition_point(F pred = F()) const {
int i = 0;
value_type s = m.unit();
if (!pred(s)) return i;
for (int w = bit_floor(data.size()); w; w >>= 1) {
if (i + w < data.size()) {
value_type s2 = m.op(s, data[i + w]);
if (pred(s2)) i += w, s = s2;
}
}
return i + 1;
}
// min i s.t. sum(i) >= x
template <class Comp = less<value_type>>
int lower_bound(value_type x, Comp comp = Comp()) const {
return partition_point([&](value_type s) { return comp(s, x); });
}
private:
M m;
vector<value_type> data;
static int lsb(int a) { return a & -a; }
};
#line 3 "bit/popcnt.hpp"
#pragma GCC target("popcnt")
template <class T>
int popcnt(T a) {
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_popcount((unsigned)a);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_popcountll((unsigned long long)a);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
return popcnt((unsigned long long)a) +
popcnt((unsigned long long)(a >> sizeof(unsigned long long) * 8));
}
}
#line 4 "ds/bit_vector.hpp"
class bit_vector {
public:
bit_vector(int n = 0) : bit(n / 8 + 1), sum(n / 8 + 2) {}
template <class It>
bit_vector(It a, It last) : bit_vector(last - a) {
int n = last - a;
rep(i, n) bit[i / 64] |= uint64_t(a[i] != 0) << (i % 64);
rep(i, bit.size()) sum[i + 1] = sum[i] + popcnt(bit[i]);
}
int size() const { return bit.size() * 64; }
bool operator[](int i) const { return bit[i / 64] >> (i % 64) & 1; }
int rank0(int r) const { return r - rank1(r); }
int rank0(int l, int r) const { return rank0(r) - rank0(l); }
int rank1(int r) const {
return sum[r / 64] + popcnt(bit[r / 64] & ~(~uint64_t(0) << (r % 64)));
}
int rank1(int l, int r) const { return rank1(r) - rank1(l); }
int rank(bool b, int r) const { return b ? rank1(r) : rank0(r); }
int rank(bool b, int l, int r) const { return b ? rank1(l, r) : rank0(l, r); }
int select0(int l, int k) const {
int r = bit.size() * 8;
while (l + 1 < r) {
int m = (l + r) / 2;
(rank0(m) <= k ? l : r) = m;
}
return l;
}
int select0(int k) const { return select0(0, k); }
int select1(int l, int k) const {
int r = bit.size() * 8;
while (l + 1 < r) {
int m = (l + r) / 2;
(rank1(m) <= k ? l : r) = m;
}
return l;
}
int select1(int k) const { return select1(0, k); }
int select(bool v, int k) const { return v ? select1(k) : select0(k); }
int select(bool v, int l, int k) const {
return v ? select1(l, k) : select0(l, k);
}
private:
vector<uint64_t> bit;
vector<int> sum;
};
#line 4 "ds/wavelet_matrix_with_fenwick.hpp"
template <class Key, Key U, class M>
class wavelet_matrix_with_fenwick {
public:
using key_type = Key;
using value_type = typename M::type;
wavelet_matrix_with_fenwick(vector<Key> a, M m = M())
: wavelet_matrix_with_fenwick(a, a, m) {}
wavelet_matrix_with_fenwick(vector<Key> a, vector<value_type> b, M m = M())
: m_(m), size_(a.size()) {
vector<bool> bit(size_);
vector<key_type> nxt_a(size_);
vector<value_type> nxt_b(size_);
repr(t, B) {
int l = 0, r = size_;
rep(i, size_) {
bit[i] = a[i] >> t & 1;
(bit[i] ? nxt_a[r - 1] : nxt_a[l]) = a[i];
(bit[i] ? nxt_b[--r] : nxt_b[l++]) = b[i];
}
mat[t] = bit_vector(all(bit));
zeros[t] = l;
fwk[t + 1] = fenwick_tree<M>(b, m);
reverse(nxt_a.begin() + r, nxt_a.end());
reverse(nxt_b.begin() + r, nxt_b.end());
swap(a, nxt_a);
swap(b, nxt_b);
}
fwk[0] = fenwick_tree<M>(b, m);
}
int size() const { return size_; }
key_type operator[](int i) const { return access(i); }
key_type access(int i) const {
key_type res = 0;
repr(t, B) {
if (mat[t][i]) {
res |= key_type(1) << t;
i = zeros[t] + mat[t].rank1(i);
} else {
i = mat[t].rank0(i);
}
}
return res;
}
// #occurences of x on [l, r)
int rank(key_type x, int l, int r) const {
tie(l, r) = range(x, l, r);
return r - l;
}
// -1 if #occurences <= k
int select(key_type x, int l, int k) const {
int r;
tie(l, r) = range(x, l, size());
l += k;
if (l >= r) return -1;
rep(t, B) {
if (x >> t & 1)
l = mat[t].select1(l - zeros[t]);
else
l = mat[t].select0(l);
}
return l;
}
// k-th greatest on [l, r)
key_type quantile(int l, int r, int k) const {
key_type res = 0;
repr(t, B) {
int r1 = mat[t].rank1(l, r);
if (r1 > k) {
res |= key_type(1) << t;
l = zeros[t] + mat[t].rank1(l);
r = l + r1;
} else {
k -= r1;
int r0 = r - l - r1;
l = mat[t].rank0(l);
r = l + r0;
}
}
return res;
}
// k-th smallest on [l, r)
key_type rquantile(int l, int r, int k) const {
return quantile(l, r, r - l - k - 1);
}
int rangefreq(int l, int r, key_type ub) const {
int res = 0;
repr(t, B) {
if (ub >> t & 1) {
int r1l = mat[t].rank1(l), r1r = mat[t].rank1(r);
int r0lr = (r - l) - (r1r - r1l);
res += r0lr;
l = zeros[t] + r1l, r = zeros[t] + r1r;
} else {
l = mat[t].rank0(l), r = mat[t].rank0(r);
}
}
return res;
}
value_type range_reduce(int l, int r, key_type ub) const {
value_type res = m_.unit();
repr(t, B) {
if (ub >> t & 1) {
int r1l = mat[t].rank1(l), r1r = mat[t].rank1(r);
res = m_.op(res, fwk[t + 1].sum(l, r));
l = zeros[t] + r1l, r = zeros[t] + r1r;
res = m_.op(res, m_.inv(fwk[t].sum(l, r)));
} else {
l = mat[t].rank0(l), r = mat[t].rank0(r);
}
}
return res;
}
// int rangefreq(int l, int r, key_type lb, key_type ub) const {
// return rangefreq(B - 1, l, r, lb, ub - 1);
// }
int rangefreq(int l, int r, key_type lb, key_type ub) const {
return rangefreq(l, r, ub) - rangefreq(l, r, lb);
}
value_type range_reduce(int l, int r, key_type lb, key_type ub) const {
return m_.op(range_reduce(l, r, ub), m_.inv(range_reduce(l, r, lb)));
}
// -1 if no such elt
key_type succ(int l, int r, key_type x) const {
int k = rangefreq(l, r, x);
return k == r - l ? -1 : rquantile(l, r, k);
}
// -1 if no such elt
key_type pred(int l, int r, key_type x) const {
int k = rangefreq(l, r, x);
return k ? rquantile(l, r, k - 1) : -1;
}
private:
static constexpr int calc_b(key_type u) {
int res = 0;
for (key_type x = u - 1; x; x /= 2) res++;
return res;
}
static constexpr int B = calc_b(U);
static_assert(B <= sizeof(key_type) * CHAR_BIT);
M m_;
int size_;
array<int, B> zeros;
array<bit_vector, B> mat;
array<fenwick_tree<M>, B + 1> fwk;
pair<int, int> range(key_type x, int l, int r) const {
repr(t, B) {
if (x >> t & 1) {
l = zeros[t] + mat[t].rank1(l);
r = zeros[t] + mat[t].rank1(r);
} else {
l = mat[t].rank0(l);
r = mat[t].rank0(r);
}
}
return make_pair(l, r);
}
// // inclusive
// int rangefreq(int t, int l, int r, key_type x, key_type lb, key_type
// ub) const {
// if (t == -1 || ()) return r - l;
// if (lb >> t & 1) {
// l = zeros[t] + mat[t].rank1(l);
// r = zeros[t] + mat[t].rank1(r);
// return rangefreq(t - 1, l, r, lb, ub);
// } else if (~ub >> t & 1) {
// l = mat[t].rank0(l);
// r = mat[t].rank0(r);
// return rangefreq(t - 1, l, r, lb, ub);
// } else {
// l = mat[t].rank0(l);
// r = zeros[t] + mat[t].rank1(r);
// return rangefreq(t - 1, l, zeros[t], lb, ~0) +
// rangefreq(t - 1, zeros[t], r, 0, ub);
// }
// }
};
#line 3 "util/comp.hpp"
template <class T>
class compress {
public:
compress(vector<T> v = {}, bool uniq = true) : data(move(v)) {
sort(data.begin(), data.end());
if (uniq) data.erase(unique(data.begin(), data.end()), data.end());
}
template <class It>
compress(It f, It l) : compress(vector<T>(f, l)) {}
int size() const { return data.size(); }
int operator()(const T& x) const {
int i = lower_bound(x);
assert(data[i] == x);
return i;
}
bool contains(const T& x) const {
return binary_search(data.begin(), data.end(), x);
}
const T& operator[](int i) const { return data[i]; }
int lower_bound(const T& x) const {
return std::lower_bound(data.begin(), data.end(), x) - data.begin();
}
int upper_bound(const T& x) const {
return upper_bound(data.begin(), data.end(), x) - data.begin() - 1;
}
auto begin() const { return data.begin(); }
auto end() const { return data.end(); }
private:
vector<T> data;
};
template <class It>
compress(It, It) -> compress<typename iterator_traits<It>::value_type>;
#line 3 "util/transpose.hpp"
template <class T, size_t... Is>
auto transpose_impl(const vector<T>& v, index_sequence<Is...>) {
tuple<vector<decay_t<tuple_element_t<Is, T>>>...> w;
(get<Is>(w).reserve(v.size()), ...);
for (const auto& row : v)
(get<Is>(w).push_back(get<Is>(row)), ...);
return w;
}
template <class T>
auto transpose(const vector<T>& v) {
return transpose_impl(v, make_index_sequence<tuple_size_v<T>>{});
}
#line 7 "test/ds/wavelet_matrix_with_fenwick.test.cpp"
int main() {
int n = in, q = in;
auto xyw = in.vec<tuple<int, int, ll>>(n);
sort(all(xyw));
auto [x, y, w] = transpose(xyw);
wavelet_matrix_with_fenwick<int, 1'000'000'001, addition<ll>> wm(y, w);
while (q--) {
int l = in, d = in, r = in, u = in;
out(wm.range_reduce(
lower_bound(all(x), l) - x.begin(), lower_bound(all(x), r) - x.begin(),
d, u));
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-12 | example_00 |
![]() |
161 ms | 12 MB |
g++-12 | max_random_00 |
![]() |
3202 ms | 187 MB |
g++-12 | max_random_01 |
![]() |
3203 ms | 188 MB |
g++-12 | max_random_02 |
![]() |
3334 ms | 189 MB |
g++-12 | n_131072_00 |
![]() |
1112 ms | 116 MB |
g++-12 | random_00 |
![]() |
2312 ms | 115 MB |
g++-12 | random_01 |
![]() |
2351 ms | 137 MB |
g++-12 | random_02 |
![]() |
1193 ms | 58 MB |
g++-12 | small_00 |
![]() |
29 ms | 12 MB |
g++-12 | small_01 |
![]() |
26 ms | 12 MB |
g++-12 | small_02 |
![]() |
27 ms | 12 MB |
g++-12 | xy_concentrate_00 |
![]() |
3355 ms | 187 MB |
g++-12 | xy_concentrate_01 |
![]() |
3327 ms | 189 MB |
g++-12 | xy_concentrate_02 |
![]() |
3317 ms | 190 MB |