This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A
#include "prelude.hpp"
#include "graph/dijkstra.hpp"
int n, m, r;
vector<pair<int, int>> G[100000];
int main() {
scanf("%d%d%d", &n, &m, &r);
rep(_, m) {
int u, v; int w; scanf("%d%d%d", &u, &v, &w);
G[u].emplace_back(v, w);
}
auto d = dijkstra(G, r);
rep(i, n) if (d[i] == INT_MAX) printf("INF\n"); else printf("%d\n", d[i]);
}
#line 1 "test/graph/dijkstra.test.cpp"
// competitive-verifier: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "graph/traits.hpp"
struct unit_edge {
int to;
operator int() const { return to; }
int w() const { return 1; }
};
template <class Weight>
struct weighted_edge {
int to;
Weight weight;
operator int() const { return to; }
Weight w() const { return weight; }
};
template <class Inner>
struct basic_graph {
using weight_type = void;
const Inner& inner;
basic_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto u : inner[v]) f(unit_edge{u});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner, class Weight>
struct basic_weighted_graph {
using weight_type = Weight;
const Inner& inner;
basic_weighted_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto [u, w] : inner[v]) f(weighted_edge<weight_type>{u, w});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner>
struct graph_trait {
using weight_type = typename Inner::weight_type;
const Inner& g;
graph_trait(const Inner& g) : g(g) { }
int size() const { return g.size(); }
template <class F>
void adj(int v, F f) const {
g.adj(v, f);
}
decltype(auto) operator[](int v) const { return g[v]; }
};
template <class T>
constexpr bool is_weighted_v =
!is_same_v<typename graph_trait<T>::weight_type, void>;
template <class T>
using weight_t =
conditional_t<is_weighted_v<T>, typename graph_trait<T>::weight_type, int>;
template <class T>
using edge_t =
conditional_t<is_weighted_v<T>, weighted_edge<weight_t<T>>, unit_edge>;
template <size_t N>
struct graph_trait<vector<int>[N]> : basic_graph<vector<int>[N]> {
using basic_graph<vector<int>[N]>::basic_graph;
int size() const { return N; }
};
template <>
struct graph_trait<vector<vector<int>>> : basic_graph<vector<vector<int>>> {
using basic_graph<vector<vector<int>>>::basic_graph;
int size() const { return this->inner.size(); }
};
template <size_t N, class Weight>
struct graph_trait<vector<pair<int, Weight>>[N]>
: basic_weighted_graph<vector<pair<int, Weight>>[N], Weight> {
using basic_weighted_graph<
vector<pair<int, Weight>>[N], Weight>::basic_weighted_graph;
int size() const { return N; }
};
template <class Weight>
struct graph_trait<vector<vector<pair<int, Weight>>>>
: basic_weighted_graph<vector<vector<pair<int, Weight>>>, Weight> {
using basic_weighted_graph<
vector<vector<pair<int, Weight>>>, Weight>::basic_weighted_graph;
int size() const { return this->inner.size(); }
};
#line 3 "range.hpp"
template <class It>
struct range : pair<It, It> {
using pair<It, It>::pair;
It begin() const { return this->first; }
It end() const { return this->second; }
It cbegin() const { return begin(); }
It cend() const { return end(); }
int size() const { return this->second - this->first; }
};
#line 4 "graph/csr.hpp"
template <size_t>
struct stdin_reader;
template <class Weight = void>
class csr_graph {
private:
struct directed_t {};
public:
using weight_type = Weight;
csr_graph() = default;
template <class It>
csr_graph(int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<false>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<false>(all(e));
}
template <class It>
static csr_graph directed(int n, It e, It e_last) {
return csr_graph(directed_t{}, n, e, e_last);
}
template <size_t Size = 1 << 26>
static csr_graph directed(int n, int m, stdin_reader<Size>& read) {
return csr_graph(directed_t{}, n, m, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(int n, stdin_reader<Size>& read) {
return csr_graph(n, n - 1, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(stdin_reader<Size>& read) {
int n = read;
return csr_graph(n, n - 1, read);
}
int size() const { return n; }
range<typename vector<edge_t<csr_graph>>::iterator> operator[](int v) const {
return {ls[v], rs[v]};
}
int deg(int v) { return rs[v] - ls[v]; }
template <class F>
void adj(int v, F f) const {
for_each(ls[v], rs[v], f);
}
private:
template <class It>
csr_graph(directed_t, int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<true>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(directed_t, int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<true>(all(e));
}
vector<typename vector<edge_t<csr_graph>>::iterator> ls, rs;
int n, m;
vector<edge_t<csr_graph>> es;
template <bool OneBased = true, size_t Size = 1 << 26>
auto read_e(stdin_reader<Size>& read) {
using E = conditional_t<is_weighted_v<csr_graph>, tuple<int, int, Weight>,
pair<int, int>>;
vector<E> res(m);
for (auto& e : res) {
read(e);
if (OneBased) get<0>(e)--, get<1>(e)--;
}
return res;
}
template <bool Directed, class It>
void init(It e, It e_last) {
if (!Directed) m *= 2;
es.resize(m);
ls.resize(n), rs.resize(n);
vector<int> sz(n);
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
sz[from]++;
if (!Directed) sz[to]++;
}
partial_sum(all(sz), sz.begin());
rep(v, n) ls[v] = rs[v] = es.begin() + sz[v];
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
if constexpr (is_weighted_v<csr_graph>)
*--ls[from] = edge_t<csr_graph>{to, get<2>(*it)};
else
*--ls[from] = edge_t<csr_graph>{to};
if (!Directed) {
if constexpr (is_weighted_v<csr_graph>)
*--ls[to] = edge_t<csr_graph>{from, get<2>(*it)};
else
*--ls[to] = edge_t<csr_graph>{from};
}
}
}
};
#line 2 "ds/heap.hpp"
template <class T, class Cmp = less<>>
class heap {
public:
heap(Cmp cmp = Cmp()) : cmp(cmp), data(1) {}
heap(int n, Cmp cmp = Cmp()) : cmp(cmp), data(1), pos(n, -1) {}
// moves out from [first, last)
template <class It>
heap(It first, It last, Cmp cmp = Cmp()) : cmp(cmp) {
init(first, last);
}
bool empty() const { return data.size() == 1; }
int size() const { return data.size() - 1; }
void reserve(int n) { pos.resize(max<size_t>(pos.size(), n), -1); }
bool contains(int i) const { return i < pos.size() && pos[i] != -1; }
void insert(int i, T x) {
reserve(i + 1);
pos[i] = data.size(), data.emplace_back(x, i);
pushup(pos[i]);
}
void modify(int i, T x) {
int v = pos[i];
bool decrease = cmp(x, exchange(data[v].first, x));
return decrease ? merge(v) : pushup(v);
}
void insert_or_modify(int i, T x) {
return contains(i) ? modify(i, x) : insert(i, x);
}
const pair<T, int>& top() const { return data[1]; }
pair<T, int> pop() { return erase(data[1].second); }
pair<T, int> erase(int i) {
int idx = exchange(pos[i], -1);
pair<T, int> res = exchange(data[idx], move(data.back()));
data.pop_back();
if (idx != data.size()) pos[data[idx].second] = idx, merge(idx);
return res;
}
private:
Cmp cmp;
vector<pair<T, int>> data;
vector<int> pos;
// moves out from [first, last)
template <class It>
void init(It first, It last) {
data.resize(1), pos.clear();
int n = distance(first, last);
data.reserve(n), pos.resize(n);
for (auto it = first; it != last; it++)
data.emplace_back(data.size(), move(*it));
iota(all(pos), 1);
repr2(v, 1, n / 2 + 1) merge(v);
}
void merge(int v) {
if (v * 2 >= data.size()) return;
int l = v * 2, r = v * 2 + 1;
int c = r < data.size() && cmp(data[l].first, data[r].first) ? r : l;
if (cmp(data[v].first, data[c].first)) {
swap(data[v], data[c]), swap(pos[data[v].second], pos[data[c].second]);
merge(c);
}
}
void pushup(int v) {
for (int p = v / 2; p && cmp(data[p].first, data[v].first); v /= 2, p /= 2)
swap(data[p], data[v]), swap(pos[data[p].second], pos[data[v].second]);
}
};
#line 4 "graph/dijkstra.hpp"
template <class G, class Iter>
vector<weight_t<G>> dijkstra(
const G& graph, Iter s_it, Iter s_last,
weight_t<G> M = numeric_limits<weight_t<G>>::max()) {
graph_trait<G> g(graph);
vector<weight_t<G>> dist(g.size(), M);
heap<weight_t<G>, greater<>> hp;
while (s_it != s_last)
hp.insert(*s_it, weight_t<G>(0)), dist[*s_it++] = weight_t<G>(0);
while (!hp.empty()) {
auto [w, v] = hp.pop();
g.adj(v, [&, v = v](auto&& e) {
if (dist[e.to] > dist[v] + e.w())
hp.insert_or_modify(e.to, dist[e.to] = dist[v] + e.w());
});
}
return dist;
}
template <class G>
vector<weight_t<G>> dijkstra(
const G& graph, int s, weight_t<G> M = numeric_limits<weight_t<G>>::max()) {
return dijkstra(graph, &s, &s + 1, M);
}
#line 5 "test/graph/dijkstra.test.cpp"
int n, m, r;
vector<pair<int, int>> G[100000];
int main() {
scanf("%d%d%d", &n, &m, &r);
rep(_, m) {
int u, v; int w; scanf("%d%d%d", &u, &v, &w);
G[u].emplace_back(v, w);
}
auto d = dijkstra(G, r);
rep(i, n) if (d[i] == INT_MAX) printf("INF\n"); else printf("%d\n", d[i]);
}