This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_B
#include "graph/tree/rerooting.hpp"
int main() {
int n;
scanf("%d", &n);
vector<vector<pair<int, int>>> G(n);
rep(_, n - 1) {
int u, v;
int w;
scanf("%d%d%d", &u, &v, &w);
G[u].emplace_back(v, w);
G[v].emplace_back(u, w);
}
auto res = rerooting(
G, pair(pair(0, -1), pair(0, -1)),
[&](auto& xu, auto& xv, int v, int w) {
if (xu.first.first < xv.first.first + w)
xu.second = xu.first, xu.first = pair(xv.first.first + w, v);
else if (xu.second.first < xv.first.first + w)
xu.second = pair(xv.first.first + w, v);
},
[&](auto& xu, auto&&, int v, auto&&) {
if (xu.first.second == v) xu.first = xu.second;
});
rep(v, n) printf("%d\n", res[v].first.first);
}
#line 1 "test/graph/tree/rerooting.test.cpp"
// competitive-verifier: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_B
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "graph/traits.hpp"
struct unit_edge {
int to;
operator int() const { return to; }
int w() const { return 1; }
};
template <class Weight>
struct weighted_edge {
int to;
Weight weight;
operator int() const { return to; }
Weight w() const { return weight; }
};
template <class Inner>
struct basic_graph {
using weight_type = void;
const Inner& inner;
basic_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto u : inner[v]) f(unit_edge{u});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner, class Weight>
struct basic_weighted_graph {
using weight_type = Weight;
const Inner& inner;
basic_weighted_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto [u, w] : inner[v]) f(weighted_edge<weight_type>{u, w});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner>
struct graph_trait {
using weight_type = typename Inner::weight_type;
const Inner& g;
graph_trait(const Inner& g) : g(g) { }
int size() const { return g.size(); }
template <class F>
void adj(int v, F f) const {
g.adj(v, f);
}
decltype(auto) operator[](int v) const { return g[v]; }
};
template <class T>
constexpr bool is_weighted_v =
!is_same_v<typename graph_trait<T>::weight_type, void>;
template <class T>
using weight_t =
conditional_t<is_weighted_v<T>, typename graph_trait<T>::weight_type, int>;
template <class T>
using edge_t =
conditional_t<is_weighted_v<T>, weighted_edge<weight_t<T>>, unit_edge>;
template <size_t N>
struct graph_trait<vector<int>[N]> : basic_graph<vector<int>[N]> {
using basic_graph<vector<int>[N]>::basic_graph;
int size() const { return N; }
};
template <>
struct graph_trait<vector<vector<int>>> : basic_graph<vector<vector<int>>> {
using basic_graph<vector<vector<int>>>::basic_graph;
int size() const { return this->inner.size(); }
};
template <size_t N, class Weight>
struct graph_trait<vector<pair<int, Weight>>[N]>
: basic_weighted_graph<vector<pair<int, Weight>>[N], Weight> {
using basic_weighted_graph<
vector<pair<int, Weight>>[N], Weight>::basic_weighted_graph;
int size() const { return N; }
};
template <class Weight>
struct graph_trait<vector<vector<pair<int, Weight>>>>
: basic_weighted_graph<vector<vector<pair<int, Weight>>>, Weight> {
using basic_weighted_graph<
vector<vector<pair<int, Weight>>>, Weight>::basic_weighted_graph;
int size() const { return this->inner.size(); }
};
#line 3 "range.hpp"
template <class It>
struct range : pair<It, It> {
using pair<It, It>::pair;
It begin() const { return this->first; }
It end() const { return this->second; }
It cbegin() const { return begin(); }
It cend() const { return end(); }
int size() const { return this->second - this->first; }
};
#line 4 "graph/csr.hpp"
template <size_t>
struct stdin_reader;
template <class Weight = void>
class csr_graph {
private:
struct directed_t {};
public:
using weight_type = Weight;
csr_graph() = default;
template <class It>
csr_graph(int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<false>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<false>(all(e));
}
template <class It>
static csr_graph directed(int n, It e, It e_last) {
return csr_graph(directed_t{}, n, e, e_last);
}
template <size_t Size = 1 << 26>
static csr_graph directed(int n, int m, stdin_reader<Size>& read) {
return csr_graph(directed_t{}, n, m, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(int n, stdin_reader<Size>& read) {
return csr_graph(n, n - 1, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(stdin_reader<Size>& read) {
int n = read;
return csr_graph(n, n - 1, read);
}
int size() const { return n; }
range<typename vector<edge_t<csr_graph>>::iterator> operator[](int v) const {
return {ls[v], rs[v]};
}
int deg(int v) { return rs[v] - ls[v]; }
template <class F>
void adj(int v, F f) const {
for_each(ls[v], rs[v], f);
}
private:
template <class It>
csr_graph(directed_t, int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<true>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(directed_t, int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<true>(all(e));
}
vector<typename vector<edge_t<csr_graph>>::iterator> ls, rs;
int n, m;
vector<edge_t<csr_graph>> es;
template <bool OneBased = true, size_t Size = 1 << 26>
auto read_e(stdin_reader<Size>& read) {
using E = conditional_t<is_weighted_v<csr_graph>, tuple<int, int, Weight>,
pair<int, int>>;
vector<E> res(m);
for (auto& e : res) {
read(e);
if (OneBased) get<0>(e)--, get<1>(e)--;
}
return res;
}
template <bool Directed, class It>
void init(It e, It e_last) {
if (!Directed) m *= 2;
es.resize(m);
ls.resize(n), rs.resize(n);
vector<int> sz(n);
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
sz[from]++;
if (!Directed) sz[to]++;
}
partial_sum(all(sz), sz.begin());
rep(v, n) ls[v] = rs[v] = es.begin() + sz[v];
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
if constexpr (is_weighted_v<csr_graph>)
*--ls[from] = edge_t<csr_graph>{to, get<2>(*it)};
else
*--ls[from] = edge_t<csr_graph>{to};
if (!Directed) {
if constexpr (is_weighted_v<csr_graph>)
*--ls[to] = edge_t<csr_graph>{from, get<2>(*it)};
else
*--ls[to] = edge_t<csr_graph>{from};
}
}
}
};
#line 3 "graph/tree/dfs.hpp"
// f(edge, par)
template <class G, class Fin, class Fout>
void dfs(const G& graph, int s, Fin&& fin, Fout&& fout) {
graph_trait<G> g(graph);
auto dfs_fn = [&](auto&& f, int v, int p) {
g.adj(v, [&](auto&& e) {
if (e.to != p) fin(e, v), f(f, e.to, v), fout(e, v);
});
};
dfs_fn(dfs_fn, s, -1);
}
// f(edge, par)
template <class G, class F>
void dfs(const G& graph, int s, F&& f) {
dfs(graph, s, f, [](auto&&, auto&&) {});
}
// f(edge, par)
template <class G, class F>
void dfs_bottom_up(const G& graph, int s, F&& f) {
dfs(graph, s, [](auto&&, auto&&) {}, f);
}
// f(edge, par or -1)
template <class G, class F>
void dfs_ord(const G& graph, int s, F&& f) {
f(s, -1);
dfs(graph, s, [&](auto&& v, int p) { f(v, p); });
}
// f(edge, par or -1)
template <class G, class F>
void dfs_rev_ord(const G& graph, int s, F&& f) {
dfs_bottom_up(graph, s, [&](auto&& v, int p) { f(v, p); });
f(weighted_edge<weight_t<G>>{s, -1}, -1);
}
#line 4 "graph/tree/rerooting.hpp"
// add(&par.data, &v.data, v, edge)
template <class G, class T, class Add, class Remove, class Inv = identity>
vector<T> rerooting(
const G& graph, vector<T> init, Add&& add = Add(), Remove remove = Remove(),
Inv e_inv = Inv()) {
graph_trait<G> g(graph);
vector<T> now(move(init)), res(g.size());
dfs_bottom_up(
graph, 0, [&](auto&& e, int p) { add(now[p], now[e.to], e.to, e.w()); });
res[0] = now[0];
dfs(
graph, 0,
[&](auto&& e, int p) {
remove(now[p], now[e.to], e.to, e.w());
add(now[e.to], now[p], p, e_inv(e.w()));
res[e.to] = now[e.to];
},
[&](auto&& e, int p) {
remove(now[e.to], now[p], p, e_inv(e.w()));
add(now[p], now[e.to], e.to, e.w());
});
return res;
}
// add(&par.data, &v.data, v, edge)
template <class G, class T, class Add, class Remove, class Inv = identity>
vector<T> rerooting(
const G& graph, T unit = T(), Add&& add = Add(), Remove remove = Remove(),
Inv e_inv = Inv()) {
return rerooting(
graph, vector<T>(graph_trait<G>(graph).size(), unit), add, remove, e_inv);
}
#line 4 "test/graph/tree/rerooting.test.cpp"
int main() {
int n;
scanf("%d", &n);
vector<vector<pair<int, int>>> G(n);
rep(_, n - 1) {
int u, v;
int w;
scanf("%d%d%d", &u, &v, &w);
G[u].emplace_back(v, w);
G[v].emplace_back(u, w);
}
auto res = rerooting(
G, pair(pair(0, -1), pair(0, -1)),
[&](auto& xu, auto& xv, int v, int w) {
if (xu.first.first < xv.first.first + w)
xu.second = xu.first, xu.first = pair(xv.first.first + w, v);
else if (xu.second.first < xv.first.first + w)
xu.second = pair(xv.first.first + w, v);
},
[&](auto& xu, auto&&, int v, auto&&) {
if (xu.first.second == v) xu.first = xu.second;
});
rep(v, n) printf("%d\n", res[v].first.first);
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-12 | 00_sample_00.in |
![]() |
143 ms | 8 MB |
g++-12 | 00_sample_01.in |
![]() |
11 ms | 8 MB |
g++-12 | 01_minimum_00.in |
![]() |
11 ms | 8 MB |
g++-12 | 01_minimum_01.in |
![]() |
12 ms | 8 MB |
g++-12 | 01_minimum_02.in |
![]() |
11 ms | 8 MB |
g++-12 | 01_minimum_03.in |
![]() |
12 ms | 8 MB |
g++-12 | 02_small_00.in |
![]() |
12 ms | 8 MB |
g++-12 | 02_small_01.in |
![]() |
11 ms | 8 MB |
g++-12 | 02_small_02.in |
![]() |
11 ms | 8 MB |
g++-12 | 50-random00.in |
![]() |
15 ms | 9 MB |
g++-12 | 50-random01.in |
![]() |
20 ms | 9 MB |
g++-12 | 50-random02.in |
![]() |
17 ms | 9 MB |
g++-12 | 50-random03.in |
![]() |
18 ms | 9 MB |
g++-12 | 50-random04.in |
![]() |
21 ms | 10 MB |
g++-12 | 50-random05.in |
![]() |
23 ms | 10 MB |
g++-12 | 50-random06.in |
![]() |
23 ms | 10 MB |
g++-12 | 50-random07.in |
![]() |
23 ms | 10 MB |
g++-12 | 50-random08.in |
![]() |
23 ms | 10 MB |
g++-12 | 50-random09.in |
![]() |
23 ms | 10 MB |
g++-12 | 50-random10.in |
![]() |
23 ms | 10 MB |
g++-12 | corner01-00.in |
![]() |
29 ms | 18 MB |
g++-12 | corner01-01.in |
![]() |
30 ms | 18 MB |
g++-12 | corner01-02.in |
![]() |
30 ms | 18 MB |
g++-12 | corner01-03.in |
![]() |
29 ms | 18 MB |
g++-12 | corner01-04.in |
![]() |
30 ms | 18 MB |
g++-12 | corner01-05.in |
![]() |
30 ms | 18 MB |
g++-12 | corner02-00.in |
![]() |
20 ms | 10 MB |
g++-12 | corner02-01.in |
![]() |
20 ms | 10 MB |
g++-12 | corner02-02.in |
![]() |
20 ms | 10 MB |
g++-12 | corner02-03.in |
![]() |
20 ms | 10 MB |
g++-12 | corner02-04.in |
![]() |
20 ms | 10 MB |
g++-12 | corner02-05.in |
![]() |
20 ms | 10 MB |