This documentation is automatically generated by competitive-verifier/competitive-verifier
// competitive-verifier: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2667
#include "graph/tree/hld.hpp"
#include "ds/range_fenwick.hpp"
int n, q;
vector<int> G[150000];
int c, u, v;
int main() {
scanf("%d%d", &n, &q);
rep(_, n - 1) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
hld hld(G, 0);
range_fenwick_tree fwk(n, addition<ll>{}, multiplies<ll>{});
while (q--) {
scanf("%d%d%d", &c, &u, &v);
if (c == 0) {
ll ans = 0;
hld.paths(u, v, [&](int l, int r) { ans += fwk.sum(l, r); });
printf("%lld\n", ans);
} else {
hld.subtree(u, [&](int l, int r) { fwk.add(l, r, v); });
}
}
}
#line 1 "test/graph/tree.hld.test.cpp"
// competitive-verifier: PROBLEM https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=2667
#line 2 "prelude.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
using vc = vector<char>;
#define rep2(i, m, n) for (auto i = (m); i < (n); i++)
#define rep(i, n) rep2(i, 0, n)
#define repr2(i, m, n) for (auto i = (n); i-- > (m);)
#define repr(i, n) repr2(i, 0, n)
#define all(x) begin(x), end(x)
auto ndvec(int n, auto e) { return vector(n, e); }
auto ndvec(int n, auto ...e) { return vector(n, ndvec(e...)); }
auto comp_key(auto&& f) { return [&](auto&& a, auto&& b) { return f(a) < f(b); }; }
auto& max(const auto& a, const auto& b) { return a < b ? b : a; }
auto& min(const auto& a, const auto& b) { return b < a ? b : a; }
#if __cpp_lib_ranges
namespace R = std::ranges;
namespace V = std::views;
#endif
#line 3 "graph/traits.hpp"
struct unit_edge {
int to;
operator int() const { return to; }
int w() const { return 1; }
};
template <class Weight>
struct weighted_edge {
int to;
Weight weight;
operator int() const { return to; }
Weight w() const { return weight; }
};
template <class Inner>
struct basic_graph {
using weight_type = void;
const Inner& inner;
basic_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto u : inner[v]) f(unit_edge{u});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner, class Weight>
struct basic_weighted_graph {
using weight_type = Weight;
const Inner& inner;
basic_weighted_graph(const Inner& g) : inner(g) { }
template <class F>
void adj(int v, F f) const {
for (auto [u, w] : inner[v]) f(weighted_edge<weight_type>{u, w});
}
int deg(int v) const { return inner[v].size(); }
};
template <class Inner>
struct graph_trait {
using weight_type = typename Inner::weight_type;
const Inner& g;
graph_trait(const Inner& g) : g(g) { }
int size() const { return g.size(); }
template <class F>
void adj(int v, F f) const {
g.adj(v, f);
}
decltype(auto) operator[](int v) const { return g[v]; }
};
template <class T>
constexpr bool is_weighted_v =
!is_same_v<typename graph_trait<T>::weight_type, void>;
template <class T>
using weight_t =
conditional_t<is_weighted_v<T>, typename graph_trait<T>::weight_type, int>;
template <class T>
using edge_t =
conditional_t<is_weighted_v<T>, weighted_edge<weight_t<T>>, unit_edge>;
template <size_t N>
struct graph_trait<vector<int>[N]> : basic_graph<vector<int>[N]> {
using basic_graph<vector<int>[N]>::basic_graph;
int size() const { return N; }
};
template <>
struct graph_trait<vector<vector<int>>> : basic_graph<vector<vector<int>>> {
using basic_graph<vector<vector<int>>>::basic_graph;
int size() const { return this->inner.size(); }
};
template <size_t N, class Weight>
struct graph_trait<vector<pair<int, Weight>>[N]>
: basic_weighted_graph<vector<pair<int, Weight>>[N], Weight> {
using basic_weighted_graph<
vector<pair<int, Weight>>[N], Weight>::basic_weighted_graph;
int size() const { return N; }
};
template <class Weight>
struct graph_trait<vector<vector<pair<int, Weight>>>>
: basic_weighted_graph<vector<vector<pair<int, Weight>>>, Weight> {
using basic_weighted_graph<
vector<vector<pair<int, Weight>>>, Weight>::basic_weighted_graph;
int size() const { return this->inner.size(); }
};
#line 3 "range.hpp"
template <class It>
struct range : pair<It, It> {
using pair<It, It>::pair;
It begin() const { return this->first; }
It end() const { return this->second; }
It cbegin() const { return begin(); }
It cend() const { return end(); }
int size() const { return this->second - this->first; }
};
#line 4 "graph/csr.hpp"
template <size_t>
struct stdin_reader;
template <class Weight = void>
class csr_graph {
private:
struct directed_t {};
public:
using weight_type = Weight;
csr_graph() = default;
template <class It>
csr_graph(int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<false>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<false>(all(e));
}
template <class It>
static csr_graph directed(int n, It e, It e_last) {
return csr_graph(directed_t{}, n, e, e_last);
}
template <size_t Size = 1 << 26>
static csr_graph directed(int n, int m, stdin_reader<Size>& read) {
return csr_graph(directed_t{}, n, m, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(int n, stdin_reader<Size>& read) {
return csr_graph(n, n - 1, read);
}
template <size_t Size = 1 << 26>
static csr_graph tree(stdin_reader<Size>& read) {
int n = read;
return csr_graph(n, n - 1, read);
}
int size() const { return n; }
range<typename vector<edge_t<csr_graph>>::iterator> operator[](int v) const {
return {ls[v], rs[v]};
}
int deg(int v) { return rs[v] - ls[v]; }
template <class F>
void adj(int v, F f) const {
for_each(ls[v], rs[v], f);
}
private:
template <class It>
csr_graph(directed_t, int n, It e, It e_last) : n(n), m(distance(e, e_last)) {
init<true>(e, e_last);
}
template <size_t Size = 1 << 26>
csr_graph(directed_t, int n, int m, stdin_reader<Size>& read) : n(n), m(m) {
auto e = read_e(read);
init<true>(all(e));
}
vector<typename vector<edge_t<csr_graph>>::iterator> ls, rs;
int n, m;
vector<edge_t<csr_graph>> es;
template <bool OneBased = true, size_t Size = 1 << 26>
auto read_e(stdin_reader<Size>& read) {
using E = conditional_t<is_weighted_v<csr_graph>, tuple<int, int, Weight>,
pair<int, int>>;
vector<E> res(m);
for (auto& e : res) {
read(e);
if (OneBased) get<0>(e)--, get<1>(e)--;
}
return res;
}
template <bool Directed, class It>
void init(It e, It e_last) {
if (!Directed) m *= 2;
es.resize(m);
ls.resize(n), rs.resize(n);
vector<int> sz(n);
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
sz[from]++;
if (!Directed) sz[to]++;
}
partial_sum(all(sz), sz.begin());
rep(v, n) ls[v] = rs[v] = es.begin() + sz[v];
for (auto it = e; it != e_last; it++) {
int from = get<0>(*it), to = get<1>(*it);
if constexpr (is_weighted_v<csr_graph>)
*--ls[from] = edge_t<csr_graph>{to, get<2>(*it)};
else
*--ls[from] = edge_t<csr_graph>{to};
if (!Directed) {
if constexpr (is_weighted_v<csr_graph>)
*--ls[to] = edge_t<csr_graph>{from, get<2>(*it)};
else
*--ls[to] = edge_t<csr_graph>{from};
}
}
}
};
#line 3 "graph/tree/hld.hpp"
class hld {
public:
template <class G>
hld(const G& graph, int r = 0) {
graph_trait<G> g(graph);
in.resize(g.size());
out.resize(g.size());
par.resize(g.size());
heavy.assign(g.size(), -1);
head.resize(g.size());
par[r] = -1;
dfs(g, r);
int t = 0;
decompose(g, t, r);
}
int idx(int v) const { return in[v]; }
int lca(int u, int v) const {
while (head[u] != head[v]) {
if (in[u] > in[v]) swap(u, v);
v = par[head[v]];
}
return in[u] < in[v] ? u : v;
}
// Call f(l[0], r[0]), f(l[1], r[1]), ...
// s.t. union of [l[i], r[i]) == {idx(v) for v in u-v-path}.
template <class F>
void paths(int u, int v, F&& f, bool exclude_lca = true) const {
while (head[u] != head[v]) {
if (in[u] > in[v]) swap(u, v);
call_f(f, idx(head[v]), idx(v) + 1);
v = par[head[v]];
}
if (in[u] > in[v]) swap(u, v);
call_f(f, idx(u) + exclude_lca, idx(v) + 1);
}
template <class F>
void subtree(int v, F&& f, bool exclude_root = true) const {
call_f(f, in[v] + exclude_root, out[v]);
}
private:
vector<int> in, out, par, heavy, head;
template <class G>
int dfs(graph_trait<G> g, int v) {
int total_size = 1, max_size = 0;
g.adj(v, [&](int u) {
if (u != par[v]) {
par[u] = v;
int sz = dfs(g, u);
total_size += sz;
if (sz > max_size) max_size = sz, heavy[v] = u;
}
});
return total_size;
}
template <class G>
void decompose(graph_trait<G> g, int& t, int v) {
in[v] = t++;
if (heavy[v] != -1) head[heavy[v]] = head[v], decompose(g, t, heavy[v]);
g.adj(v, [&](int u) {
if (u != par[v] && u != heavy[v]) head[u] = u, decompose(g, t, u);
});
out[v] = t;
}
template <class F>
void call_f(F& f, int l, int r) const {
if (r - l) f(l, r);
}
};
#line 3 "algebra.hpp"
#define CONST(val) [=] { return val; }
#define WRAP_FN(func) \
[](auto&&... args) { return func(forward<decltype(args)>(args)...); }
template <class Unit, class Op>
struct monoid : private Unit, private Op {
using type = decltype(declval<Unit>()());
monoid(Unit unit, Op op) : Unit(unit), Op(op) {}
type unit() const { return Unit::operator()(); }
type op(type a, type b) const { return Op::operator()(a, b); }
};
template <class Unit, class Op, class Inv>
struct group : monoid<Unit, Op>, private Inv {
using type = typename monoid<Unit, Op>::type;
group(Unit unit, Op op, Inv inv) : monoid<Unit, Op>(unit, op), Inv(inv) {}
type inv(type a) const { return Inv::operator()(a); }
};
template <class T>
struct addition {
using type = T;
type unit() const { return 0; }
type op(type a, type b) const { return a + b; }
type inv(type a) const { return -a; }
};
template <class T>
struct maximum {
using type = T;
type unit() const { return numeric_limits<T>::min(); }
type op(type a, type b) const { return a > b ? a : b; }
};
template <class T>
struct minimum {
using type = T;
type unit() const { return numeric_limits<T>::max(); }
type op(type a, type b) const { return a > b ? b : a; }
};
template <class T, T nul = -1>
struct assign {
using type = T;
type unit() const { return nul; }
type op(type a, type b) const { return b == nul ? a : b; }
};
#line 3 "bit/clz.hpp"
#pragma GCC target("lzcnt")
template <class T>
int clz(T x) {
if (!x) return sizeof(T) * 8;
if constexpr (sizeof(T) <= sizeof(unsigned)) {
return __builtin_clz((unsigned)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long)) {
return __builtin_clzll((unsigned long long)x);
} else if constexpr (sizeof(T) <= sizeof(unsigned long long) * 2) {
int l = clz((unsigned long long)(x >> sizeof(unsigned long long) * 8));
return l != sizeof(unsigned long long) * 8 ? l : l + clz((unsigned long long)x);
}
}
#line 4 "bit/ilog2.hpp"
template <class T>
__attribute__((pure)) int ilog2(T x) { assert(x != 0); return sizeof(T) * 8 - 1 - clz(x); }
template <class T>
__attribute__((pure)) int ilog2_ceil(T x) { return x == 0 || x == 1 ? 0 : ilog2(x - 1) + 1; }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_floor(T x) { return T(1) << ilog2(x); }
template <class T, enable_if_t<is_signed_v<T>>* = nullptr>
__attribute__((pure)) T bit_ceil(T x) { return T(1) << ilog2_ceil(x); }
#line 4 "ds/fenwick.hpp"
template <class M>
class fenwick_tree {
public:
using value_type = typename M::type;
fenwick_tree() = default;
fenwick_tree(vector<value_type> v, M m = M()) : m(m), data(move(v)) {
data.insert(data.cbegin(), m.unit());
for (int i = 1; i < data.size(); i++) {
if (i + lsb(i) < data.size())
data[i + lsb(i)] = m.op(data[i + lsb(i)], data[i]);
}
}
template <class Iter>
fenwick_tree(Iter f, Iter l, M m = M())
: fenwick_tree(vector<value_type>(f, l), m) {}
fenwick_tree(int n, M m = M()) : m(m), data(n + 1, m.unit()) {}
int size() const { return data.size() - 1; }
void clear() { fill(data.begin(), data.end(), m.unit()); }
void add(int i, value_type v) {
for (i++; i < data.size(); i += lsb(i)) data[i] = m.op(data[i], v);
}
void sub(int i, value_type v) { add(i, m.inv(v)); }
void assign(int i, value_type v) { add(i, m.op(v, m.inv(sum(i, i + 1)))); }
value_type sum(int r) const {
value_type res = m.unit();
for (; r; r -= lsb(r)) res = m.op(res, data[r]);
return res;
}
value_type sum(int l, int r) const { return m.op(m.inv(sum(l)), sum(r)); }
template <class F>
int partition_point(F pred = F()) const {
int i = 0;
value_type s = m.unit();
if (!pred(s)) return i;
for (int w = bit_floor(data.size()); w; w >>= 1) {
if (i + w < data.size()) {
value_type s2 = m.op(s, data[i + w]);
if (pred(s2)) i += w, s = s2;
}
}
return i + 1;
}
// min i s.t. sum(i) >= x
template <class Comp = less<value_type>>
int lower_bound(value_type x, Comp comp = Comp()) const {
return partition_point([&](value_type s) { return comp(s, x); });
}
private:
M m;
vector<value_type> data;
static int lsb(int a) { return a & -a; }
};
#line 3 "ds/range_fenwick.hpp"
template <class M, class F = multiplies<>>
class range_fenwick_tree {
public:
using value_type = typename M::type;
range_fenwick_tree(vector<value_type> data, M m = M(), F mul = F())
: m(m), mul(mul), tri(data.size(), m), rect(move(data), m) {}
range_fenwick_tree(int n = 0, M m = M(), F mul = F())
: m(m), mul(mul), rect(n, m), tri(n, m) {}
int size() const { return rect.size(); }
void clear() { rect.clear(), tri.clear(); }
void add(int i, value_type v) { rect.add(i, v); }
void add(int l, int r, value_type v) {
tri.add(l, v), tri.sub(r, v);
rect.sub(l, mul(v, l)), rect.add(r, mul(v, r));
}
void sub(int i, value_type v) { add(i, m.inv(v)); }
void sub(int l, int r, value_type v) { add(l, r, m.inv(v)); }
value_type sum(int r) const { return m.op(rect.sum(r), mul(tri.sum(r), r)); }
value_type sum(int l, int r) const { return m.op(m.inv(sum(l)), sum(r)); }
// template <class F>
// int partition_point(F pred = F()) const {
// int i = 0;
// value_type s = m.unit();
// if (!pred(s)) return i;
// for (int w = bit_floor(rect.data.size()); w; w >>= 1) {
// if (i + w < rect.data.size()) {
// value_type s2 =
// m.op(m.op(s, rect.data[i + w]), mul(tri.data[i + w], i + w + 1));
// if (pred(s2)) i += w, s = s2;
// }
// }
// return i + 1;
// }
// // min i s.t. !comp(sum(i), x)
// template <class Comp = less<value_type>>
// int lower_bound(value_type x, Comp comp = Comp()) const {
// return partition_point([&](value_type s) { return comp(s, x); });
// }
private:
M m;
F mul;
fenwick_tree<M> rect, tri;
};
#line 5 "test/graph/tree.hld.test.cpp"
int n, q;
vector<int> G[150000];
int c, u, v;
int main() {
scanf("%d%d", &n, &q);
rep(_, n - 1) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
}
hld hld(G, 0);
range_fenwick_tree fwk(n, addition<ll>{}, multiplies<ll>{});
while (q--) {
scanf("%d%d%d", &c, &u, &v);
if (c == 0) {
ll ans = 0;
hld.paths(u, v, [&](int l, int r) { ans += fwk.sum(l, r); });
printf("%lld\n", ans);
} else {
hld.subtree(u, [&](int l, int r) { fwk.add(l, r, v); });
}
}
}
Env | Name | Status | Elapsed | Memory |
---|---|---|---|---|
g++-12 | 00_sample_00.in |
![]() |
17 ms | 12 MB |
g++-12 | 00_sample_01.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_00.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_01.in |
![]() |
15 ms | 12 MB |
g++-12 | 10_small_02.in |
![]() |
15 ms | 12 MB |
g++-12 | 10_small_03.in |
![]() |
15 ms | 12 MB |
g++-12 | 10_small_04.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_05.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_06.in |
![]() |
17 ms | 12 MB |
g++-12 | 10_small_07.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_08.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_09.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_10.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_11.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_12.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_13.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_14.in |
![]() |
15 ms | 12 MB |
g++-12 | 10_small_15.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_16.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_17.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_18.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_19.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_20.in |
![]() |
15 ms | 12 MB |
g++-12 | 10_small_21.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_22.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_23.in |
![]() |
16 ms | 12 MB |
g++-12 | 10_small_24.in |
![]() |
15 ms | 12 MB |
g++-12 | 11_manyadd_00.in |
![]() |
320 ms | 162 MB |
g++-12 | 11_manyadd_01.in |
![]() |
314 ms | 161 MB |
g++-12 | 11_manyadd_02.in |
![]() |
312 ms | 162 MB |
g++-12 | 11_manyadd_03.in |
![]() |
312 ms | 162 MB |
g++-12 | 11_manyadd_04.in |
![]() |
160 ms | 24 MB |
g++-12 | 11_manyadd_05.in |
![]() |
160 ms | 24 MB |
g++-12 | 11_manyadd_06.in |
![]() |
159 ms | 24 MB |
g++-12 | 11_manyadd_07.in |
![]() |
166 ms | 24 MB |
g++-12 | 12_manydist_00.in |
![]() |
357 ms | 162 MB |
g++-12 | 12_manydist_01.in |
![]() |
355 ms | 162 MB |
g++-12 | 12_manydist_02.in |
![]() |
355 ms | 162 MB |
g++-12 | 12_manydist_03.in |
![]() |
351 ms | 162 MB |
g++-12 | 12_manydist_04.in |
![]() |
419 ms | 24 MB |
g++-12 | 12_manydist_05.in |
![]() |
414 ms | 24 MB |
g++-12 | 12_manydist_06.in |
![]() |
425 ms | 24 MB |
g++-12 | 12_manydist_07.in |
![]() |
419 ms | 24 MB |
g++-12 | 13_fromroot_00.in |
![]() |
286 ms | 24 MB |
g++-12 | 13_fromroot_01.in |
![]() |
294 ms | 24 MB |
g++-12 | 13_fromroot_02.in |
![]() |
316 ms | 24 MB |
g++-12 | 13_fromroot_03.in |
![]() |
323 ms | 24 MB |
g++-12 | 14_maximum_00.in |
![]() |
296 ms | 24 MB |
g++-12 | 14_maximum_01.in |
![]() |
296 ms | 24 MB |
g++-12 | 14_maximum_02.in |
![]() |
301 ms | 24 MB |
g++-12 | 14_maximum_03.in |
![]() |
299 ms | 24 MB |
g++-12 | 15_dfskiller_00.in |
![]() |
431 ms | 299 MB |
g++-12 | 15_dfskiller_01.in |
![]() |
433 ms | 299 MB |
g++-12 | 16_manyleaves_00.in |
![]() |
141 ms | 17 MB |
g++-12 | 16_manyleaves_01.in |
![]() |
143 ms | 17 MB |
g++-12 | 17_leafroot_00.in |
![]() |
259 ms | 24 MB |
g++-12 | 17_leafroot_01.in |
![]() |
259 ms | 24 MB |